{"title":"Evaluation of Sociomedical Factors on Corneal Donor Recovery Using Machine Learning.","authors":"Wuqaas M Munir,Saleha Z Munir","doi":"10.1080/09286586.2024.2399350","DOIUrl":null,"url":null,"abstract":"PURPOSE\r\nTo evaluate co-morbid sociomedical conditions affecting corneal donor endothelial cell density and transplant suitability.\r\n\r\nMETHOD(S)\r\nCorneal donor transplant information was collected from the CorneaGen eye bank between June 1, 2012 and June 30, 2016. A natural language processing algorithm was applied to generate co-morbid sociomedical conditions for each donor. Variables of importance were identified using four machine learning models (random forest, Glmnet, Earth, nnet), for the outcomes of transplant suitability and endothelial cell density. SHAP (SHapley Additive exPlanations) values were generated, with beeswarm and box plots to visualize the contribution of each feature to the models.\r\n\r\nRESULTS\r\nWith a total of 23,522 unique donors, natural language processing generated 30,573 indices, which were reduced to 41 most common co-morbid sociomedical conditions. For transplant suitability, hypertension ranked the top overall variable of importance in two models. Hypertension, chronic obstructive pulmonary disease, history of smoking, and alcohol use appeared consistently in the top variables of importance. By SHAP feature importance, hypertension (0.042), alcohol use (0.017), ventilation of donor (0.011), and history of smoking (0.010) contributed the most to the transplant suitability model. For endothelial cell density, hypertension was the sociomedical condition of highest importance in three models. SHAP scores were highest among the sociomedical conditions of hypertension (0.037), alcohol use (0.013), myocardial infarction (0.012), and history of smoking (0.011).\r\n\r\nCONCLUSION\r\nIn a large cohort of corneal donor eyes, hypertension was identified as the most common contributor to machine learning models examining sociomedical conditions for corneal donor transplant suitability and endothelial cell density.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"17 1","pages":"1-8"},"PeriodicalIF":16.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/09286586.2024.2399350","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
PURPOSE
To evaluate co-morbid sociomedical conditions affecting corneal donor endothelial cell density and transplant suitability.
METHOD(S)
Corneal donor transplant information was collected from the CorneaGen eye bank between June 1, 2012 and June 30, 2016. A natural language processing algorithm was applied to generate co-morbid sociomedical conditions for each donor. Variables of importance were identified using four machine learning models (random forest, Glmnet, Earth, nnet), for the outcomes of transplant suitability and endothelial cell density. SHAP (SHapley Additive exPlanations) values were generated, with beeswarm and box plots to visualize the contribution of each feature to the models.
RESULTS
With a total of 23,522 unique donors, natural language processing generated 30,573 indices, which were reduced to 41 most common co-morbid sociomedical conditions. For transplant suitability, hypertension ranked the top overall variable of importance in two models. Hypertension, chronic obstructive pulmonary disease, history of smoking, and alcohol use appeared consistently in the top variables of importance. By SHAP feature importance, hypertension (0.042), alcohol use (0.017), ventilation of donor (0.011), and history of smoking (0.010) contributed the most to the transplant suitability model. For endothelial cell density, hypertension was the sociomedical condition of highest importance in three models. SHAP scores were highest among the sociomedical conditions of hypertension (0.037), alcohol use (0.013), myocardial infarction (0.012), and history of smoking (0.011).
CONCLUSION
In a large cohort of corneal donor eyes, hypertension was identified as the most common contributor to machine learning models examining sociomedical conditions for corneal donor transplant suitability and endothelial cell density.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.