Evaluation of Sociomedical Factors on Corneal Donor Recovery Using Machine Learning.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wuqaas M Munir,Saleha Z Munir
{"title":"Evaluation of Sociomedical Factors on Corneal Donor Recovery Using Machine Learning.","authors":"Wuqaas M Munir,Saleha Z Munir","doi":"10.1080/09286586.2024.2399350","DOIUrl":null,"url":null,"abstract":"PURPOSE\r\nTo evaluate co-morbid sociomedical conditions affecting corneal donor endothelial cell density and transplant suitability.\r\n\r\nMETHOD(S)\r\nCorneal donor transplant information was collected from the CorneaGen eye bank between June 1, 2012 and June 30, 2016. A natural language processing algorithm was applied to generate co-morbid sociomedical conditions for each donor. Variables of importance were identified using four machine learning models (random forest, Glmnet, Earth, nnet), for the outcomes of transplant suitability and endothelial cell density. SHAP (SHapley Additive exPlanations) values were generated, with beeswarm and box plots to visualize the contribution of each feature to the models.\r\n\r\nRESULTS\r\nWith a total of 23,522 unique donors, natural language processing generated 30,573 indices, which were reduced to 41 most common co-morbid sociomedical conditions. For transplant suitability, hypertension ranked the top overall variable of importance in two models. Hypertension, chronic obstructive pulmonary disease, history of smoking, and alcohol use appeared consistently in the top variables of importance. By SHAP feature importance, hypertension (0.042), alcohol use (0.017), ventilation of donor (0.011), and history of smoking (0.010) contributed the most to the transplant suitability model. For endothelial cell density, hypertension was the sociomedical condition of highest importance in three models. SHAP scores were highest among the sociomedical conditions of hypertension (0.037), alcohol use (0.013), myocardial infarction (0.012), and history of smoking (0.011).\r\n\r\nCONCLUSION\r\nIn a large cohort of corneal donor eyes, hypertension was identified as the most common contributor to machine learning models examining sociomedical conditions for corneal donor transplant suitability and endothelial cell density.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"17 1","pages":"1-8"},"PeriodicalIF":16.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/09286586.2024.2399350","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

PURPOSE To evaluate co-morbid sociomedical conditions affecting corneal donor endothelial cell density and transplant suitability. METHOD(S) Corneal donor transplant information was collected from the CorneaGen eye bank between June 1, 2012 and June 30, 2016. A natural language processing algorithm was applied to generate co-morbid sociomedical conditions for each donor. Variables of importance were identified using four machine learning models (random forest, Glmnet, Earth, nnet), for the outcomes of transplant suitability and endothelial cell density. SHAP (SHapley Additive exPlanations) values were generated, with beeswarm and box plots to visualize the contribution of each feature to the models. RESULTS With a total of 23,522 unique donors, natural language processing generated 30,573 indices, which were reduced to 41 most common co-morbid sociomedical conditions. For transplant suitability, hypertension ranked the top overall variable of importance in two models. Hypertension, chronic obstructive pulmonary disease, history of smoking, and alcohol use appeared consistently in the top variables of importance. By SHAP feature importance, hypertension (0.042), alcohol use (0.017), ventilation of donor (0.011), and history of smoking (0.010) contributed the most to the transplant suitability model. For endothelial cell density, hypertension was the sociomedical condition of highest importance in three models. SHAP scores were highest among the sociomedical conditions of hypertension (0.037), alcohol use (0.013), myocardial infarction (0.012), and history of smoking (0.011). CONCLUSION In a large cohort of corneal donor eyes, hypertension was identified as the most common contributor to machine learning models examining sociomedical conditions for corneal donor transplant suitability and endothelial cell density.
利用机器学习评估角膜捐献者恢复的社会医学因素。
目的评估影响角膜捐献者内皮细胞密度和移植适宜性的共病社会医疗条件。方法在2012年6月1日至2016年6月30日期间从CorneaGen眼库收集角膜捐献者移植信息。采用自然语言处理算法为每位捐献者生成共病社会医疗条件。使用四种机器学习模型(随机森林、Glmnet、Earth、nnet)确定了移植适宜性和内皮细胞密度结果的重要变量。结果总共有 23522 名独特的捐献者,通过自然语言处理生成了 30573 个指数,并将其归纳为 41 种最常见的合并社会医疗条件。就移植适宜性而言,高血压是两个模型中最重要的总体变量。高血压、慢性阻塞性肺病、吸烟史和酗酒一直是最重要的变量。从 SHAP 特征的重要性来看,高血压(0.042)、酗酒(0.017)、供体通气(0.011)和吸烟史(0.010)对移植适宜性模型的贡献最大。就内皮细胞密度而言,高血压是三个模型中最重要的社会医学条件。结论 在大量的角膜供体眼球中,高血压被确定为机器学习模型中最常见的因素,这些模型检查了角膜供体移植适宜性和内皮细胞密度的社会医疗条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信