Volatile Fatty Acid Production through Arresting Methanogenesis by Electro-Synthesized Hydrogen Peroxide in Anaerobic Digestion and Subsequent Recovery by Electrodialysis
{"title":"Volatile Fatty Acid Production through Arresting Methanogenesis by Electro-Synthesized Hydrogen Peroxide in Anaerobic Digestion and Subsequent Recovery by Electrodialysis","authors":"Jiasi Sun, Xi Zhang, Jianjun Guan, Zhen He","doi":"10.1021/acsestengg.4c00384","DOIUrl":null,"url":null,"abstract":"Producing volatile fatty acids (VFAs) in anaerobic digestion (AD) is of strong interest because of VFAs’ potential values in biomanufacturing. Despite some success of VFA production via pretreatment, in situ inhibition of methanogens for VFA accumulation has yet to be explored. Herein, a system consisting of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) production, application of H<sub>2</sub>O<sub>2</sub> for inhibiting methanogens in AD, and VFA separation was investigated. A polytetrafluoroethylene-based electrospinning electrode was synthesized and capable of generating ∼4.2 g L<sup>–1</sup> H<sub>2</sub>O<sub>2</sub>. When the generated H<sub>2</sub>O<sub>2</sub> was applied to the AD, methanogens were inhibited, and VFA accumulation occurred. With the addition of 80 mg L<sup>–1</sup> H<sub>2</sub>O<sub>2</sub>, an average VFA concentration of 10.6 g COD L<sup>–1</sup> was obtained. The long-term H<sub>2</sub>O<sub>2</sub> inhibition effect on methanogenesis was examined for nearly 100 days. A 2.3- to 3.3-fold increase in malondialdehyde levels, which indicated increased cell damage, along with a significant decrease in methane production and an increase in VFA concentration, might suggest that H<sub>2</sub>O<sub>2</sub> could potentially inhibit methanogens while allowing acidogenic bacteria to remain functional. The accumulated VFAs were separated and then recovered using an electrodialysis unit, with a maximum VFA concentration of 26.7 g COD L<sup>–1</sup>. The results of this study will encourage further exploration of the proposed system for VFA production by addressing several challenges, including a better understanding of the inhibition mechanism and a further increase in VFA yields.","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"18 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsestengg.4c00384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Producing volatile fatty acids (VFAs) in anaerobic digestion (AD) is of strong interest because of VFAs’ potential values in biomanufacturing. Despite some success of VFA production via pretreatment, in situ inhibition of methanogens for VFA accumulation has yet to be explored. Herein, a system consisting of hydrogen peroxide (H2O2) production, application of H2O2 for inhibiting methanogens in AD, and VFA separation was investigated. A polytetrafluoroethylene-based electrospinning electrode was synthesized and capable of generating ∼4.2 g L–1 H2O2. When the generated H2O2 was applied to the AD, methanogens were inhibited, and VFA accumulation occurred. With the addition of 80 mg L–1 H2O2, an average VFA concentration of 10.6 g COD L–1 was obtained. The long-term H2O2 inhibition effect on methanogenesis was examined for nearly 100 days. A 2.3- to 3.3-fold increase in malondialdehyde levels, which indicated increased cell damage, along with a significant decrease in methane production and an increase in VFA concentration, might suggest that H2O2 could potentially inhibit methanogens while allowing acidogenic bacteria to remain functional. The accumulated VFAs were separated and then recovered using an electrodialysis unit, with a maximum VFA concentration of 26.7 g COD L–1. The results of this study will encourage further exploration of the proposed system for VFA production by addressing several challenges, including a better understanding of the inhibition mechanism and a further increase in VFA yields.
期刊介绍:
ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources.
The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope.
Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.