Zelong Yang, Wenjie Gao, Kai Yang, Weigang Chen, Yong Chen
{"title":"The protective role of RACK1 in hepatic ischemia‒reperfusion injury-induced ferroptosis","authors":"Zelong Yang, Wenjie Gao, Kai Yang, Weigang Chen, Yong Chen","doi":"10.1007/s00011-024-01944-y","DOIUrl":null,"url":null,"abstract":"<p>Although ferroptosis plays a crucial role in hepatic ischemia‒reperfusion injury (IRI), the molecular mechanisms underlying this process remain unclear. We aimed to explore the potential involvement of the receptor for activated C kinase 1 (RACK1) in hepatic IRI-triggered ferroptosis. Using hepatocyte-specific RACK1 knockout mice and alpha mouse liver 12 (AML12) cells, we conducted a series of in vivo and in vitro experiments. We found that RACK1 has a protective effect on hepatic IRI-induced ferroptosis. Specifically, RACK1 was found to interact with AMPKα through its 1–93 amino acid (aa) region, which facilitates the phosphorylation of AMPKα at threonine 172 (Thr172), ultimately exerting an antiferroptotic effect. Furthermore, the long noncoding RNA (lncRNA) ZNFX1 Antisense 1 (ZFAS1) directly binds to aa 181–317 of RACK1. ZFAS1 has a dual impact on RACK1 by promoting its ubiquitin‒proteasome-mediated degradation and inhibiting its expression at the transcriptional level, which indirectly exacerbates hepatic IRI-induced ferroptosis. These findings underscore the protective role of RACK1 in hepatic IRI-induced ferroptosis and showcase its potential as a prophylactic target for hepatic IRI mitigation.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":"31 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00011-024-01944-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Although ferroptosis plays a crucial role in hepatic ischemia‒reperfusion injury (IRI), the molecular mechanisms underlying this process remain unclear. We aimed to explore the potential involvement of the receptor for activated C kinase 1 (RACK1) in hepatic IRI-triggered ferroptosis. Using hepatocyte-specific RACK1 knockout mice and alpha mouse liver 12 (AML12) cells, we conducted a series of in vivo and in vitro experiments. We found that RACK1 has a protective effect on hepatic IRI-induced ferroptosis. Specifically, RACK1 was found to interact with AMPKα through its 1–93 amino acid (aa) region, which facilitates the phosphorylation of AMPKα at threonine 172 (Thr172), ultimately exerting an antiferroptotic effect. Furthermore, the long noncoding RNA (lncRNA) ZNFX1 Antisense 1 (ZFAS1) directly binds to aa 181–317 of RACK1. ZFAS1 has a dual impact on RACK1 by promoting its ubiquitin‒proteasome-mediated degradation and inhibiting its expression at the transcriptional level, which indirectly exacerbates hepatic IRI-induced ferroptosis. These findings underscore the protective role of RACK1 in hepatic IRI-induced ferroptosis and showcase its potential as a prophylactic target for hepatic IRI mitigation.
期刊介绍:
Inflammation Research (IR) publishes peer-reviewed papers on all aspects of inflammation and related fields including histopathology, immunological mechanisms, gene expression, mediators, experimental models, clinical investigations and the effect of drugs. Related fields are broadly defined and include for instance, allergy and asthma, shock, pain, joint damage, skin disease as well as clinical trials of relevant drugs.