Vishwa Bhanu, Kalpana Gupta, R. Saravanakumar, Ankur Gupta, Chandan Pandey
{"title":"Influence of buttering layers on the microstructural evolution and mechanical behavior of Incoloy 800HT and P91 steel welded joint","authors":"Vishwa Bhanu, Kalpana Gupta, R. Saravanakumar, Ankur Gupta, Chandan Pandey","doi":"10.1007/s43452-024-01044-y","DOIUrl":null,"url":null,"abstract":"<div><p>This study delves into the microstructure and mechanical properties of a dissimilar metal weld (DMW) joining Incoloy 800HT and P91 steel. The P91 was buttered with Inconel 82 (ERNiCr-3) filler layers, and the final DMW weld was fabricated using Inconel 617 (ERNiCrCoMo-1) filler. Weld interface regions were characterized using electron backscatter diffraction (EBSD) and scanning electron microscopy. EBSD uncovered unique microstructural characteristics across the DMW. Extensive investigation was conducted on the heat-affected zone (HAZ) of Incoloy 800HT, revealing a consistently stable austenitic microstructure characterized by random grain orientations. Nevertheless, the weld fusion zone (WFZ) exhibits an intricate microstructure characterized by dendrites that extend into packets. The WFZ and the buttering layer interaction exhibited a predominantly face-centered cubic (FCC) structure. Recrystallization was indicated in this region. During tensile testing, the DMW specimens experienced failures at different locations and exhibited varying mechanical properties. A standard specimen made of Incoloy 800HT base metal experienced failure during welding. The DMW exhibited a maximum ultimate tensile strength (UTS) of 671 MPa and a yield strength (YS) of 234 MPa. The buttering process helped avoid the post-weld heat treatment to a certain extent. A maximum of 98 ± 5 J Charpy impact toughness was observed in the WFZ of the DMW failing in a complete ductile mode.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"24 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-024-01044-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This study delves into the microstructure and mechanical properties of a dissimilar metal weld (DMW) joining Incoloy 800HT and P91 steel. The P91 was buttered with Inconel 82 (ERNiCr-3) filler layers, and the final DMW weld was fabricated using Inconel 617 (ERNiCrCoMo-1) filler. Weld interface regions were characterized using electron backscatter diffraction (EBSD) and scanning electron microscopy. EBSD uncovered unique microstructural characteristics across the DMW. Extensive investigation was conducted on the heat-affected zone (HAZ) of Incoloy 800HT, revealing a consistently stable austenitic microstructure characterized by random grain orientations. Nevertheless, the weld fusion zone (WFZ) exhibits an intricate microstructure characterized by dendrites that extend into packets. The WFZ and the buttering layer interaction exhibited a predominantly face-centered cubic (FCC) structure. Recrystallization was indicated in this region. During tensile testing, the DMW specimens experienced failures at different locations and exhibited varying mechanical properties. A standard specimen made of Incoloy 800HT base metal experienced failure during welding. The DMW exhibited a maximum ultimate tensile strength (UTS) of 671 MPa and a yield strength (YS) of 234 MPa. The buttering process helped avoid the post-weld heat treatment to a certain extent. A maximum of 98 ± 5 J Charpy impact toughness was observed in the WFZ of the DMW failing in a complete ductile mode.
期刊介绍:
Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science.
The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics.
The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation.
In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.