{"title":"Procyanidin B1 Promotes PSMC3‐NRF2 Ubiquitination to Induce Ferroptosis in Glioblastoma","authors":"Wei Gao, Yuan Li, Xiang Lin, Kun Deng, Xinmiao Long, Danyang Li, Meng Huang, Xiangyu Wang, Yucong Xu, Xiaoling She, Minghua Wu","doi":"10.1002/ptr.8328","DOIUrl":null,"url":null,"abstract":"NRF2 signaling is a crucial antioxidant defense mechanism against ferroptosis in tumors, and targeting NRF2 is essential for tumor therapy. However, the effectiveness of NRF2 inhibitors remains unexplored. The active ingredients of traditional Chinese medicine serve as important sources of NRF2 inhibitors. In this study, we established an intracranial glioblastoma (GBM) orthotopic model and observed the effects of procyanidin B1 on tumor growth and ferroptosis. Using protein‐small‐molecule docking, z‐stack assay of laser confocal imaging, surface plasmon resonance assay, immunoprecipitation, mass spectrometry, and western blotting, we detected the binding between procyanidin B1 and NRF2 and the effect of PSMC3 on the ubiquitin‐dependent degradation of NRF2 in GBM cells. Our results showed that procyanidin B1 acted as a novel NRF2 inhibitor to suppress GBM cell proliferation and prolonged the survival of GBM‐bearing mice; it also mediated the interaction between PSMC3 and NRF2 to promote ubiquitin‐dependent protein degradation of NRF2, which induced ferroptosis in GBM cells. In addition, we found that procyanidin B1 enhanced H₂O₂ accumulation by downregulating NRF2 during ferroptosis in GBM cells. The botanical agent procyanidin B1 induced ferroptosis and exerted anti‐tumor effects through PSMC3‐mediated ubiquitin‐dependent degradation of NRF2 proteins, providing a potential drug candidate for adjuvant therapy in patients with GBM.","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":"24 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytotherapy Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ptr.8328","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
NRF2 signaling is a crucial antioxidant defense mechanism against ferroptosis in tumors, and targeting NRF2 is essential for tumor therapy. However, the effectiveness of NRF2 inhibitors remains unexplored. The active ingredients of traditional Chinese medicine serve as important sources of NRF2 inhibitors. In this study, we established an intracranial glioblastoma (GBM) orthotopic model and observed the effects of procyanidin B1 on tumor growth and ferroptosis. Using protein‐small‐molecule docking, z‐stack assay of laser confocal imaging, surface plasmon resonance assay, immunoprecipitation, mass spectrometry, and western blotting, we detected the binding between procyanidin B1 and NRF2 and the effect of PSMC3 on the ubiquitin‐dependent degradation of NRF2 in GBM cells. Our results showed that procyanidin B1 acted as a novel NRF2 inhibitor to suppress GBM cell proliferation and prolonged the survival of GBM‐bearing mice; it also mediated the interaction between PSMC3 and NRF2 to promote ubiquitin‐dependent protein degradation of NRF2, which induced ferroptosis in GBM cells. In addition, we found that procyanidin B1 enhanced H₂O₂ accumulation by downregulating NRF2 during ferroptosis in GBM cells. The botanical agent procyanidin B1 induced ferroptosis and exerted anti‐tumor effects through PSMC3‐mediated ubiquitin‐dependent degradation of NRF2 proteins, providing a potential drug candidate for adjuvant therapy in patients with GBM.
期刊介绍:
Phytotherapy Research is an internationally recognized pharmacological journal that serves as a trailblazing resource for biochemists, pharmacologists, and toxicologists. We strive to disseminate groundbreaking research on medicinal plants, pushing the boundaries of knowledge and understanding in this field.
Our primary focus areas encompass pharmacology, toxicology, and the clinical applications of herbs and natural products in medicine. We actively encourage submissions on the effects of commonly consumed food ingredients and standardized plant extracts. We welcome a range of contributions including original research papers, review articles, and letters.
By providing a platform for the latest developments and discoveries in phytotherapy, we aim to support the advancement of scientific knowledge and contribute to the improvement of modern medicine.