Tensile testing in high-pressure gaseous hydrogen using the hollow specimen method

IF 4.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tomás Freitas, Florian Konert, Jonathan Nietzke, Zephanja Krzysch, Thomas Böllinghaus, Thorsten Michler, Ken Wackermann, Heiner Oesterlin, Mohamed Tlili, Peter Ruchti, Denise Beitelschmidt, Stephan Elsen-Humberg, Timo Koenigs, Thomas Systermans, Oded Sobol
{"title":"Tensile testing in high-pressure gaseous hydrogen using the hollow specimen method","authors":"Tomás Freitas, Florian Konert, Jonathan Nietzke, Zephanja Krzysch, Thomas Böllinghaus, Thorsten Michler, Ken Wackermann, Heiner Oesterlin, Mohamed Tlili, Peter Ruchti, Denise Beitelschmidt, Stephan Elsen-Humberg, Timo Koenigs, Thomas Systermans, Oded Sobol","doi":"10.1557/s43577-024-00776-9","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Metallic materials, predominantly steels, are the most common structural materials in the various components along the hydrogen supply chain. Ensuring their sustainable and safe use in hydrogen technologies is a key factor in the ramp-up of the hydrogen economy. This requires extensive materials qualification, however, most of the accepted; and standardized test methods for determining the influence of gaseous hydrogen on metallic materials describe complex and costly procedures that are only available to a very limited extent worldwide. The hollow specimen technique is a simple, rapid, and economical method designed to overcome the limitations of the current methods for the qualification of metallic materials under high-pressure hydrogen gas. However, this technique is not yet standardized. The TransHyDE-H2Hohlzug project is presented in this article, along with the main steps required to optimize the hollow specimen technique. This includes closing knowledge gaps related to the specimen geometry, surface quality, and gas purity in dedicated working packages, thus contributing to a comprehensive standardization of the technique for tests in high-pressure hydrogen gas.</p><h3 data-test=\"abstract-sub-heading\">Impact statement</h3><p>The hydrogen economy is considered a key solution for achieving climate neutrality in Europe, as it plays a crucial role in the decarbonization of sectors such as transport, industry, power, etc. Ensuring the safety and reliability of infrastructure is crucial for the ramp-up of the hydrogen economy. Therefore, it is necessary to meticulously study the materials and components used for infrastructure under conditions that closely resemble in-service conditions. The currently standardized methods are limited as they do not precisely replicate in-service conditions, and when they do, they are often complex, costly, and not easily accessible. This article presents the hollow specimen technique, a simple, and economical method developed to address the limitations of current standardized methods. The results from this work will contribute to the standardization of this technique for tests in high-pressure hydrogen gas. This will enable a faster evaluation of materials for hydrogen applications by industry and academia, thereby contributing to the growth of the hydrogen economy.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mrs Bulletin","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43577-024-00776-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metallic materials, predominantly steels, are the most common structural materials in the various components along the hydrogen supply chain. Ensuring their sustainable and safe use in hydrogen technologies is a key factor in the ramp-up of the hydrogen economy. This requires extensive materials qualification, however, most of the accepted; and standardized test methods for determining the influence of gaseous hydrogen on metallic materials describe complex and costly procedures that are only available to a very limited extent worldwide. The hollow specimen technique is a simple, rapid, and economical method designed to overcome the limitations of the current methods for the qualification of metallic materials under high-pressure hydrogen gas. However, this technique is not yet standardized. The TransHyDE-H2Hohlzug project is presented in this article, along with the main steps required to optimize the hollow specimen technique. This includes closing knowledge gaps related to the specimen geometry, surface quality, and gas purity in dedicated working packages, thus contributing to a comprehensive standardization of the technique for tests in high-pressure hydrogen gas.

Impact statement

The hydrogen economy is considered a key solution for achieving climate neutrality in Europe, as it plays a crucial role in the decarbonization of sectors such as transport, industry, power, etc. Ensuring the safety and reliability of infrastructure is crucial for the ramp-up of the hydrogen economy. Therefore, it is necessary to meticulously study the materials and components used for infrastructure under conditions that closely resemble in-service conditions. The currently standardized methods are limited as they do not precisely replicate in-service conditions, and when they do, they are often complex, costly, and not easily accessible. This article presents the hollow specimen technique, a simple, and economical method developed to address the limitations of current standardized methods. The results from this work will contribute to the standardization of this technique for tests in high-pressure hydrogen gas. This will enable a faster evaluation of materials for hydrogen applications by industry and academia, thereby contributing to the growth of the hydrogen economy.

Graphical abstract

Abstract Image

使用空心试样法在高压气态氢中进行拉伸试验
摘要 金属材料,主要是钢材,是氢气供应链上各种部件中最常见的结构材料。确保金属材料在氢技术中的可持续和安全使用是提升氢经济的关键因素。这就需要对材料进行广泛的鉴定,然而,大多数公认的、用于确定气态氢对金属材料影响的标准化测试方法都描述了复杂而昂贵的程序,而这些程序在全球范围内的可用性非常有限。空心试样技术是一种简单、快速和经济的方法,旨在克服目前高压氢气环境下金属材料鉴定方法的局限性。然而,这种技术尚未标准化。本文介绍了 TransHyDE-H2Hohlzug 项目,以及优化空心试样技术所需的主要步骤。这包括在专用工作包中缩小与试样几何形状、表面质量和气体纯度相关的知识差距,从而促进高压氢气测试技术的全面标准化。影响声明氢经济被认为是欧洲实现气候中和的关键解决方案,因为它在交通、工业、电力等行业的去碳化过程中发挥着至关重要的作用。确保基础设施的安全性和可靠性对于氢经济的发展至关重要。因此,有必要对基础设施所用的材料和部件进行细致的研究,研究条件应与实际使用条件非常相似。目前的标准化方法存在局限性,因为它们无法精确复制使用条件,即使复制了使用条件,通常也很复杂、昂贵,而且不易获得。本文介绍了空心试样技术,这是一种简单而经济的方法,旨在解决目前标准化方法的局限性。这项工作的成果将有助于高压氢气测试技术的标准化。这将使工业界和学术界能够更快地评估氢气应用材料,从而促进氢经济的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mrs Bulletin
Mrs Bulletin 工程技术-材料科学:综合
CiteScore
7.40
自引率
2.00%
发文量
193
审稿时长
4-8 weeks
期刊介绍: MRS Bulletin is one of the most widely recognized and highly respected publications in advanced materials research. Each month, the Bulletin provides a comprehensive overview of a specific materials theme, along with industry and policy developments, and MRS and materials-community news and events. Written by leading experts, the overview articles are useful references for specialists, but are also presented at a level understandable to a broad scientific audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信