Text-to-Model Transformation: Natural Language-Based Model Generation Framework

IF 2.3 4区 社会学 Q1 SOCIAL SCIENCES, INTERDISCIPLINARY
Systems Pub Date : 2024-09-14 DOI:10.3390/systems12090369
Aditya Akundi, Joshua Ontiveros, Sergio Luna
{"title":"Text-to-Model Transformation: Natural Language-Based Model Generation Framework","authors":"Aditya Akundi, Joshua Ontiveros, Sergio Luna","doi":"10.3390/systems12090369","DOIUrl":null,"url":null,"abstract":"System modeling language (SysML) diagrams generated manually by system modelers can sometimes be prone to errors, which are time-consuming and introduce subjectivity. Natural language processing (NLP) techniques and tools to create SysML diagrams can aid in improving software and systems design processes. Though NLP effectively extracts and analyzes raw text data, such as text-based requirement documents, to assist in design specification, natural language, inherent complexity, and variability pose challenges in accurately interpreting the data. In this paper, we explore the integration of NLP with SysML to automate the generation of system models from input textual requirements. We propose a model generation framework leveraging Python and the spaCy NLP library to process text input and generate class/block definition diagrams using PlantUML for visual representation. The intent of this framework is to aid in reducing the manual effort in creating SysML v1.6 diagrams—class/block definition diagrams in this case. We evaluate the effectiveness of the framework using precision and recall measures. The contribution of this paper to the systems modeling domain is two-fold. First, a review and analysis of natural language processing techniques for the automated generation of SysML diagrams are provided. Second, a framework to automatically extract textual relationships tailored for generating a class diagram/block diagram that contains the classes/blocks, their relationships, methods, and attributes is presented.","PeriodicalId":36394,"journal":{"name":"Systems","volume":"48 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.3390/systems12090369","RegionNum":4,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

System modeling language (SysML) diagrams generated manually by system modelers can sometimes be prone to errors, which are time-consuming and introduce subjectivity. Natural language processing (NLP) techniques and tools to create SysML diagrams can aid in improving software and systems design processes. Though NLP effectively extracts and analyzes raw text data, such as text-based requirement documents, to assist in design specification, natural language, inherent complexity, and variability pose challenges in accurately interpreting the data. In this paper, we explore the integration of NLP with SysML to automate the generation of system models from input textual requirements. We propose a model generation framework leveraging Python and the spaCy NLP library to process text input and generate class/block definition diagrams using PlantUML for visual representation. The intent of this framework is to aid in reducing the manual effort in creating SysML v1.6 diagrams—class/block definition diagrams in this case. We evaluate the effectiveness of the framework using precision and recall measures. The contribution of this paper to the systems modeling domain is two-fold. First, a review and analysis of natural language processing techniques for the automated generation of SysML diagrams are provided. Second, a framework to automatically extract textual relationships tailored for generating a class diagram/block diagram that contains the classes/blocks, their relationships, methods, and attributes is presented.
文本到模型的转换:基于自然语言的模型生成框架
系统建模人员手动生成的系统建模语言(SysML)图有时很容易出错,不仅耗时,而且带有主观性。创建 SysML 图表的自然语言处理(NLP)技术和工具有助于改进软件和系统设计流程。虽然 NLP 可以有效地提取和分析原始文本数据(如基于文本的需求文档),以协助设计规范,但自然语言、固有的复杂性和可变性给准确解释数据带来了挑战。在本文中,我们探讨了如何将 NLP 与 SysML 整合,以便从输入的文本需求自动生成系统模型。我们提出了一个模型生成框架,利用 Python 和 spaCy NLP 库处理文本输入,并使用 PlantUML 生成可视化表示的类/块定义图。该框架旨在帮助减少创建 SysML v1.6 图表(本例中为类/块定义图)的人工工作量。我们使用精确度和召回率来评估该框架的有效性。本文对系统建模领域有两方面的贡献。首先,本文回顾并分析了用于自动生成 SysML 图表的自然语言处理技术。其次,本文介绍了一个自动提取文本关系的框架,该框架为生成包含类/块、它们之间的关系、方法和属性的类图/框图量身定制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Systems
Systems Decision Sciences-Information Systems and Management
CiteScore
2.80
自引率
15.80%
发文量
204
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信