Kai Wang, Qing Chen, Haiyan Xie, Miao Wang, Xu Kong, Kaiyuan Cheng, Zhiliang Jin
{"title":"The Construction of Type II Cu2O/ZnFe2O4 Heterojunction Promoted the Photocatalytic Hydrogen Production Activity","authors":"Kai Wang, Qing Chen, Haiyan Xie, Miao Wang, Xu Kong, Kaiyuan Cheng, Zhiliang Jin","doi":"10.1007/s10562-024-04830-8","DOIUrl":null,"url":null,"abstract":"<div><p>Photocatalytic hydrogen production by semiconductors is an optimal path to achieve solar energy conversion. In this work, Cu<sub>2</sub>O/ZnFe<sub>2</sub>O<sub>4</sub> type II heterostructure is composed of ZnFe<sub>2</sub>O<sub>4</sub> nanoparticles loaded on the surface of Cu<sub>2</sub>O microspheres, the photocatalytic hydrogen evolution performance is studied. Under the irradiation 5 h of 5 w LED lamp, the hydrogen production of Cu<sub>2</sub>O/ZnFe<sub>2</sub>O<sub>4</sub> composites was 30.8 and 12.7 times higher than pure Cu<sub>2</sub>O and pure ZnFe<sub>2</sub>O<sub>4</sub>, respectively. In addition, after four cycles of experiments for 20 h, the hydrogen production is still maintained at 67.4% of the initial activity, indicating the relatively stable hydrogen evolution activity of the composite material. The electron transfer mechanism of the photocatalyst was confirmed through the utilization of density functional theory (DFT) and in-situ irradiation X-ray photoelectron spectroscopy. The effective interfacial contact between Cu<sub>2</sub>O and ZnFe<sub>2</sub>O<sub>4</sub> nanoparticles forms a type II heterojunction, which makes the effective separation of photogenerated charges, facilitates the reduction of protons to H<sub>2</sub>, and achieves efficient hydrogen production. This work presents a strategy for simple design and fabrication of highly efficient composite photocatalysts.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"154 12","pages":"6227 - 6240"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-024-04830-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Photocatalytic hydrogen production by semiconductors is an optimal path to achieve solar energy conversion. In this work, Cu2O/ZnFe2O4 type II heterostructure is composed of ZnFe2O4 nanoparticles loaded on the surface of Cu2O microspheres, the photocatalytic hydrogen evolution performance is studied. Under the irradiation 5 h of 5 w LED lamp, the hydrogen production of Cu2O/ZnFe2O4 composites was 30.8 and 12.7 times higher than pure Cu2O and pure ZnFe2O4, respectively. In addition, after four cycles of experiments for 20 h, the hydrogen production is still maintained at 67.4% of the initial activity, indicating the relatively stable hydrogen evolution activity of the composite material. The electron transfer mechanism of the photocatalyst was confirmed through the utilization of density functional theory (DFT) and in-situ irradiation X-ray photoelectron spectroscopy. The effective interfacial contact between Cu2O and ZnFe2O4 nanoparticles forms a type II heterojunction, which makes the effective separation of photogenerated charges, facilitates the reduction of protons to H2, and achieves efficient hydrogen production. This work presents a strategy for simple design and fabrication of highly efficient composite photocatalysts.
期刊介绍:
Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.
The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.