{"title":"Green synthesis and optimization of bacterial cellulose production from food industry by-products by response surface methodolgy","authors":"Ashutosh Pandey, Annika Singh, Mukesh Kr. Singh","doi":"10.1007/s00289-024-05492-7","DOIUrl":null,"url":null,"abstract":"<div><p>The statistical optimization of process parameters using eco-friendly methods to utilize industrial waste for optimal bacterial cellulose (BC) production has yet to be explored. This study adopts a sustainable approach to optimize the biosynthesis of BC production parameters using response surface methodology. A Box-Behnken Experimental Design with three independent variables, such as incubation temperature, medium shaking frequency, and pH of the nitrogen source, was employed to prepare 17 samples of BC from traditional carbon sources (D-Glucose) and low-cost carbon sources such as molasses and beehive extract, which are byproducts of the food industry. The purity and presence of cellulose in the BC were characterized by chemical solubility tests and Fourier transform infrared spectroscopy analysis. The physical and crystalline morphology of the BC was characterized by scanning electron microscopy and X-ray diffractometry. The thermal stability and molar mass (m/z) of BC were analyzed using thermogravimetric analysis and MALDI-TOF mass spectrometry. The influence of process parameters on BC production yields was recorded as 6 g/L in glucose medium, 9.5 g/L in beehive extract medium, and 11.7 g/L in molasses medium under the optimized conditions of 29.08 °C incubation temperature, 126.98 rpm shaking frequency, and pH 5.68. The estimated total costs for BC production were $175/kg from the glucose-based medium, $85.08/kg from the molasses-based medium and $105.26/kg from the beehive extract-based medium. This study aimed to establish optimal conditions for producing comparatively cheap and cost-effective BC for biomedical applications.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":737,"journal":{"name":"Polymer Bulletin","volume":"81 18","pages":"16965 - 16998"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Bulletin","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00289-024-05492-7","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The statistical optimization of process parameters using eco-friendly methods to utilize industrial waste for optimal bacterial cellulose (BC) production has yet to be explored. This study adopts a sustainable approach to optimize the biosynthesis of BC production parameters using response surface methodology. A Box-Behnken Experimental Design with three independent variables, such as incubation temperature, medium shaking frequency, and pH of the nitrogen source, was employed to prepare 17 samples of BC from traditional carbon sources (D-Glucose) and low-cost carbon sources such as molasses and beehive extract, which are byproducts of the food industry. The purity and presence of cellulose in the BC were characterized by chemical solubility tests and Fourier transform infrared spectroscopy analysis. The physical and crystalline morphology of the BC was characterized by scanning electron microscopy and X-ray diffractometry. The thermal stability and molar mass (m/z) of BC were analyzed using thermogravimetric analysis and MALDI-TOF mass spectrometry. The influence of process parameters on BC production yields was recorded as 6 g/L in glucose medium, 9.5 g/L in beehive extract medium, and 11.7 g/L in molasses medium under the optimized conditions of 29.08 °C incubation temperature, 126.98 rpm shaking frequency, and pH 5.68. The estimated total costs for BC production were $175/kg from the glucose-based medium, $85.08/kg from the molasses-based medium and $105.26/kg from the beehive extract-based medium. This study aimed to establish optimal conditions for producing comparatively cheap and cost-effective BC for biomedical applications.
期刊介绍:
"Polymer Bulletin" is a comprehensive academic journal on polymer science founded in 1988. It was founded under the initiative of the late Mr. Wang Baoren, a famous Chinese chemist and educator. This journal is co-sponsored by the Chinese Chemical Society, the Institute of Chemistry, and the Chinese Academy of Sciences and is supervised by the China Association for Science and Technology. It is a core journal and is publicly distributed at home and abroad.
"Polymer Bulletin" is a monthly magazine with multiple columns, including a project application guide, outlook, review, research papers, highlight reviews, polymer education and teaching, information sharing, interviews, polymer science popularization, etc. The journal is included in the CSCD Chinese Science Citation Database. It serves as the source journal for Chinese scientific and technological paper statistics and the source journal of Peking University's "Overview of Chinese Core Journals."