Computational insight into transition metal atoms anchored on B2C3P as single-atom electrocatalysts for nitrogen reduction reaction

IF 3.8 3区 化学 Q2 CHEMISTRY, PHYSICAL
ChemCatChem Pub Date : 2024-09-18 DOI:10.1002/cctc.202401325
Pengfei Ma, Liwei Jiang, Chengsong Liu, Zhijun Yang, Wei Song, Chaozheng He, Tao Zhang
{"title":"Computational insight into transition metal atoms anchored on B2C3P as single-atom electrocatalysts for nitrogen reduction reaction","authors":"Pengfei Ma, Liwei Jiang, Chengsong Liu, Zhijun Yang, Wei Song, Chaozheng He, Tao Zhang","doi":"10.1002/cctc.202401325","DOIUrl":null,"url":null,"abstract":"NH3 is not only an important chemical raw material, but also a high energy storage chemical with zero carbon. Electrocatalytic nitrogen reduction reaction (NRR), which can be driven by clean electric energy under ambient conditions, have become a promising technology for NH3 synthesis due to their environmentally friendly properties. Due to the limitations of low yield and high overpotential, efficient catalysts are urgently needed to solve this problem. In this study, based on density functional theory method and high throughput screening strategy, the NRR was investigated on transition metal single atom anchored to two-dimensional B2C3P surface (TM@B2C3P) as single-atom catalysts (SACs). The results showed that V@B2C3P and Ti@B2C3P have good catalytic properties, and the limiting potentials via the enzymatic pathway were −0.10 and −0.24 V, respectively. Furthermore, the charge density difference and crystal orbital Hamilton population calculations demonstrated that the high catalytic activity can be attributed to the obvious charge transfer between TM@B2C3P and the adsorption intermediates. It is hoped that this work can play a certain role in exploring the application of SACs in NRR.","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"15 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemCatChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cctc.202401325","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

NH3 is not only an important chemical raw material, but also a high energy storage chemical with zero carbon. Electrocatalytic nitrogen reduction reaction (NRR), which can be driven by clean electric energy under ambient conditions, have become a promising technology for NH3 synthesis due to their environmentally friendly properties. Due to the limitations of low yield and high overpotential, efficient catalysts are urgently needed to solve this problem. In this study, based on density functional theory method and high throughput screening strategy, the NRR was investigated on transition metal single atom anchored to two-dimensional B2C3P surface (TM@B2C3P) as single-atom catalysts (SACs). The results showed that V@B2C3P and Ti@B2C3P have good catalytic properties, and the limiting potentials via the enzymatic pathway were −0.10 and −0.24 V, respectively. Furthermore, the charge density difference and crystal orbital Hamilton population calculations demonstrated that the high catalytic activity can be attributed to the obvious charge transfer between TM@B2C3P and the adsorption intermediates. It is hoped that this work can play a certain role in exploring the application of SACs in NRR.
通过计算深入了解锚定在 B2C3P 上的过渡金属原子作为单原子电催化剂促进氮还原反应的情况
NH3 不仅是一种重要的化工原料,还是一种零碳的高储能化学品。电催化氮还原反应(NRR)可在环境条件下由清洁电能驱动,因其环境友好的特性,已成为一种前景广阔的 NH3 合成技术。由于氮还原反应存在产率低、过电位高等局限性,亟需高效催化剂来解决这一问题。本研究基于密度泛函理论方法和高通量筛选策略,研究了锚定在二维 B2C3P 表面(TM@B2C3P)的过渡金属单原子作为单原子催化剂(SACs)的无还原性。结果表明,V@B2C3P 和 Ti@B2C3P 具有良好的催化性能,通过酶途径的极限电位分别为 -0.10 V 和 -0.24 V。此外,电荷密度差和晶体轨道汉密尔顿群计算表明,高催化活性可归因于 TM@B2C3P 与吸附中间体之间明显的电荷转移。希望这项工作能对探索 SAC 在 NRR 中的应用起到一定的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemCatChem
ChemCatChem 化学-物理化学
CiteScore
8.10
自引率
4.40%
发文量
511
审稿时长
1.3 months
期刊介绍: With an impact factor of 4.495 (2018), ChemCatChem is one of the premier journals in the field of catalysis. The journal provides primary research papers and critical secondary information on heterogeneous, homogeneous and bio- and nanocatalysis. The journal is well placed to strengthen cross-communication within between these communities. Its authors and readers come from academia, the chemical industry, and government laboratories across the world. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and is supported by the German Catalysis Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信