Mining unique cysteine synthetases and computational study on thoroughly eliminating feedback inhibition through tunnel engineering

IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Protein Science Pub Date : 2024-09-14 DOI:10.1002/pro.5160
Shuai Xu, Zong‐Lin Li, Zhi‐Min Li, Hong‐Lai Liu
{"title":"Mining unique cysteine synthetases and computational study on thoroughly eliminating feedback inhibition through tunnel engineering","authors":"Shuai Xu, Zong‐Lin Li, Zhi‐Min Li, Hong‐Lai Liu","doi":"10.1002/pro.5160","DOIUrl":null,"url":null,"abstract":"L‐cysteine is an essential component in pharmaceutical and agricultural industries, and synthetic biology has made strides in developing new metabolic pathways for its production, particularly in archaea with unique O‐phosphoserine sulfhydrylases (OPSS) as key enzymes. In this study, we employed database mining to identify a highly catalytic activity OPSS from <jats:italic>Acetobacterium</jats:italic> sp. (AsOPSS). However, it was observed that the enzymatic activity of AsOPSS suffered significant feedback inhibition from the product L‐cysteine, exhibiting an IC<jats:sub>50</jats:sub> value of merely 1.2 mM. A semi‐rational design combined with tunnel analysis strategy was conducted to engineer AsOPSS. The best variant, AsOPSS<jats:sup>A218R</jats:sup> was achieved, totally eliminating product inhibition without sacrificing catalytic efficiency. Molecular docking and molecular dynamic simulations indicated that the binding conformation of AsOPSS<jats:sup>A218R</jats:sup> with L‐cys was altered, leading to a reduced affinity between L‐cysteine and the active pocket. Tunnel analysis revealed that the AsOPSS<jats:sup>A218R</jats:sup> variant reshaped the landscape of the tunnel, resulting in the construction of a new tunnel. Furthermore, random acceleration molecular dynamics simulation and umbrella sampling simulation demonstrated that the novel tunnel improved the suitability for product release and effectively separated the interference between the product release and substrate binding processes. Finally, more than 45 mM of L‐cysteine was produced in vitro within 2 h using the AsOPSS<jats:sup>A218R</jats:sup> variant. Our findings emphasize the potential for relieving feedback inhibition by artificially generating new product release channels, while also laying an enzymatic foundation for efficient L‐cysteine production.","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"82 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.5160","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

L‐cysteine is an essential component in pharmaceutical and agricultural industries, and synthetic biology has made strides in developing new metabolic pathways for its production, particularly in archaea with unique O‐phosphoserine sulfhydrylases (OPSS) as key enzymes. In this study, we employed database mining to identify a highly catalytic activity OPSS from Acetobacterium sp. (AsOPSS). However, it was observed that the enzymatic activity of AsOPSS suffered significant feedback inhibition from the product L‐cysteine, exhibiting an IC50 value of merely 1.2 mM. A semi‐rational design combined with tunnel analysis strategy was conducted to engineer AsOPSS. The best variant, AsOPSSA218R was achieved, totally eliminating product inhibition without sacrificing catalytic efficiency. Molecular docking and molecular dynamic simulations indicated that the binding conformation of AsOPSSA218R with L‐cys was altered, leading to a reduced affinity between L‐cysteine and the active pocket. Tunnel analysis revealed that the AsOPSSA218R variant reshaped the landscape of the tunnel, resulting in the construction of a new tunnel. Furthermore, random acceleration molecular dynamics simulation and umbrella sampling simulation demonstrated that the novel tunnel improved the suitability for product release and effectively separated the interference between the product release and substrate binding processes. Finally, more than 45 mM of L‐cysteine was produced in vitro within 2 h using the AsOPSSA218R variant. Our findings emphasize the potential for relieving feedback inhibition by artificially generating new product release channels, while also laying an enzymatic foundation for efficient L‐cysteine production.
挖掘独特的半胱氨酸合成酶,并对通过隧道工程彻底消除反馈抑制进行计算研究
L-半胱氨酸是制药业和农业的重要成分,合成生物学在开发生产L-半胱氨酸的新代谢途径方面取得了长足进步,特别是在以独特的O-磷酸丝氨酸巯基酶(OPSS)为关键酶的古细菌中。在本研究中,我们利用数据库挖掘技术从醋杆菌中鉴定出了一种高催化活性的 OPSS(AsOPSS)。然而,我们发现 AsOPSS 的酶活性受到了产物 L-半胱氨酸的显著反馈抑制,其 IC50 值仅为 1.2 mM。我们采用半合理设计结合隧道分析的策略来设计 AsOPSS。最终得到了最佳变体 AsOPSSA218R,它在不牺牲催化效率的情况下完全消除了对产物的抑制。分子对接和分子动力学模拟表明,AsOPSSA218R 与 L-cys 的结合构象发生了改变,导致 L-cysteine 与活性口袋之间的亲和力降低。隧道分析表明,AsOPSSA218R 变体重塑了隧道景观,从而构建了一个新的隧道。此外,随机加速分子动力学模拟和伞状取样模拟表明,新隧道提高了产物释放的适宜性,并有效分离了产物释放和底物结合过程之间的干扰。最后,使用 AsOPSSA218R 变体在体外 2 小时内生产出了超过 45 毫摩尔的 L-半胱氨酸。我们的发现强调了通过人工生成新的产物释放通道来缓解反馈抑制的潜力,同时也为高效生产 L-半胱氨酸奠定了酶学基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Protein Science
Protein Science 生物-生化与分子生物学
CiteScore
12.40
自引率
1.20%
发文量
246
审稿时长
1 months
期刊介绍: Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution. Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics. The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication. Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信