From Magnetostatics to Topology: Antiferromagnetic Vortex States in NiO-Fe Nanostructures

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Michał Ślęzak, Tobias Wagner, Venkata Krishna Bharadwaj, Olena Gomonay, Anna Kozioł-Rachwał, Tevfik Onur Menteş, Andrea Locatelli, Marcin Zając, Dorota Wilgocka-Ślęzak, Piotr Dróżdż, Tomasz Ślęzak
{"title":"From Magnetostatics to Topology: Antiferromagnetic Vortex States in NiO-Fe Nanostructures","authors":"Michał Ślęzak,&nbsp;Tobias Wagner,&nbsp;Venkata Krishna Bharadwaj,&nbsp;Olena Gomonay,&nbsp;Anna Kozioł-Rachwał,&nbsp;Tevfik Onur Menteş,&nbsp;Andrea Locatelli,&nbsp;Marcin Zając,&nbsp;Dorota Wilgocka-Ślęzak,&nbsp;Piotr Dróżdż,&nbsp;Tomasz Ślęzak","doi":"10.1002/admi.202400309","DOIUrl":null,"url":null,"abstract":"<p>Magnetic vortices are topological spin structures frequently found in ferromagnets, yet novel to antiferromagnets. By combining experiment and theory, it is demonstrated that in a nanostructured antiferromagnetic-ferromagnetic NiO(111)-Fe(110) bilayer, a magnetic vortex is naturally stabilized by magnetostatic interactions in the ferromagnet and is imprinted onto the adjacent antiferromagnet via interface exchange coupling. Micromagnetic simulations are used to construct a corresponding phase diagram of the stability of the imprinted antiferromagnetic vortex state. The in-depth analysis reveals that the interplay between interface exchange coupling and the antiferromagnet magnetic anisotropy plays a crucial role in locally reorienting the Néel vector out-of-plane in the prototypical in-plane antiferromagnet NiO and thereby stabilizing the vortices in the antiferromagnet.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"11 31","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400309","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400309","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic vortices are topological spin structures frequently found in ferromagnets, yet novel to antiferromagnets. By combining experiment and theory, it is demonstrated that in a nanostructured antiferromagnetic-ferromagnetic NiO(111)-Fe(110) bilayer, a magnetic vortex is naturally stabilized by magnetostatic interactions in the ferromagnet and is imprinted onto the adjacent antiferromagnet via interface exchange coupling. Micromagnetic simulations are used to construct a corresponding phase diagram of the stability of the imprinted antiferromagnetic vortex state. The in-depth analysis reveals that the interplay between interface exchange coupling and the antiferromagnet magnetic anisotropy plays a crucial role in locally reorienting the Néel vector out-of-plane in the prototypical in-plane antiferromagnet NiO and thereby stabilizing the vortices in the antiferromagnet.

Abstract Image

Abstract Image

从磁静力学到拓扑学:氧化镍-铁纳米结构中的反铁磁涡旋态
磁漩涡是铁磁体中经常出现的拓扑自旋结构,但对反铁磁体来说却是新颖的。通过实验和理论的结合,证明了在纳米结构的反铁磁-铁磁 NiO(111)-Fe(110) 双层中,磁涡旋通过铁磁体中的磁静电相互作用自然稳定下来,并通过界面交换耦合印刻到相邻的反铁磁体上。微磁模拟用于构建印记反铁磁涡旋态稳定性的相应相图。深入的分析表明,界面交换耦合与反铁磁体磁各向异性之间的相互作用在局部调整平面内反铁磁体 NiO 的奈尔矢量方向至平面外,从而稳定反铁磁体中的涡旋方面起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials Interfaces
Advanced Materials Interfaces CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
5.60%
发文量
1174
审稿时长
1.3 months
期刊介绍: Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018. The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface. Advanced Materials Interfaces covers all topics in interface-related research: Oil / water separation, Applications of nanostructured materials, 2D materials and heterostructures, Surfaces and interfaces in organic electronic devices, Catalysis and membranes, Self-assembly and nanopatterned surfaces, Composite and coating materials, Biointerfaces for technical and medical applications. Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信