Detecting fatigue in multiple sclerosis through automatic speech analysis

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Marcelo Dias, Felix Dörr, Susett Garthof, Simona Schäfer, Julia Elmers, Louisa Schwed, Nicklas Linz, James Overell, Helen Hayward-Koennecke, Johannes Tröger, Alexandra König, Anja Dillenseger, Björn Tackenberg, Tjalf Ziemssen
{"title":"Detecting fatigue in multiple sclerosis through automatic speech analysis","authors":"Marcelo Dias, Felix Dörr, Susett Garthof, Simona Schäfer, Julia Elmers, Louisa Schwed, Nicklas Linz, James Overell, Helen Hayward-Koennecke, Johannes Tröger, Alexandra König, Anja Dillenseger, Björn Tackenberg, Tjalf Ziemssen","doi":"10.3389/fnhum.2024.1449388","DOIUrl":null,"url":null,"abstract":"Multiple sclerosis (MS) is a chronic neuroinflammatory disease characterized by central nervous system demyelination and axonal degeneration. Fatigue affects a major portion of MS patients, significantly impairing their daily activities and quality of life. Despite its prevalence, the mechanisms underlying fatigue in MS are poorly understood, and measuring fatigue remains a challenging task. This study evaluates the efficacy of automated speech analysis in detecting fatigue in MS patients. MS patients underwent a detailed clinical assessment and performed a comprehensive speech protocol. Using features from three different free speech tasks and a proprietary cognition score, our support vector machine model achieved an AUC on the ROC of 0.74 in detecting fatigue. Using only free speech features evoked from a picture description task we obtained an AUC of 0.68. This indicates that specific free speech patterns can be useful in detecting fatigue. Moreover, cognitive fatigue was significantly associated with lower speech ratio in free speech (<jats:italic>ρ</jats:italic> = −0.283, <jats:italic>p</jats:italic> = 0.001), suggesting that it may represent a specific marker of fatigue in MS patients. Together, our results show that automated speech analysis, of a single narrative free speech task, offers an objective, ecologically valid and low-burden method for fatigue assessment. Speech analysis tools offer promising potential applications in clinical practice for improving disease monitoring and management.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnhum.2024.1449388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple sclerosis (MS) is a chronic neuroinflammatory disease characterized by central nervous system demyelination and axonal degeneration. Fatigue affects a major portion of MS patients, significantly impairing their daily activities and quality of life. Despite its prevalence, the mechanisms underlying fatigue in MS are poorly understood, and measuring fatigue remains a challenging task. This study evaluates the efficacy of automated speech analysis in detecting fatigue in MS patients. MS patients underwent a detailed clinical assessment and performed a comprehensive speech protocol. Using features from three different free speech tasks and a proprietary cognition score, our support vector machine model achieved an AUC on the ROC of 0.74 in detecting fatigue. Using only free speech features evoked from a picture description task we obtained an AUC of 0.68. This indicates that specific free speech patterns can be useful in detecting fatigue. Moreover, cognitive fatigue was significantly associated with lower speech ratio in free speech (ρ = −0.283, p = 0.001), suggesting that it may represent a specific marker of fatigue in MS patients. Together, our results show that automated speech analysis, of a single narrative free speech task, offers an objective, ecologically valid and low-burden method for fatigue assessment. Speech analysis tools offer promising potential applications in clinical practice for improving disease monitoring and management.
通过自动语音分析检测多发性硬化症患者的疲劳状况
多发性硬化症(MS)是一种以中枢神经系统脱髓鞘和轴突变性为特征的慢性神经炎症性疾病。疲劳影响着大部分多发性硬化症患者,严重损害他们的日常活动和生活质量。尽管疲劳在多发性硬化症中很普遍,但人们对其发病机制却知之甚少,疲劳的测量仍然是一项具有挑战性的任务。本研究评估了自动语音分析在检测多发性硬化症患者疲劳方面的功效。多发性硬化症患者接受了详细的临床评估,并进行了全面的语音测试。我们的支持向量机模型使用了三种不同的自由言语任务特征和专有的认知评分,在检测疲劳方面的 ROC AUC 达到了 0.74。仅使用图片描述任务中的自由言语特征,我们的 AUC 为 0.68。这表明,特定的自由言语模式可用于检测疲劳。此外,认知疲劳与自由言语中较低的语音比率有显著关联(ρ = -0.283,p = 0.001),这表明它可能代表了多发性硬化症患者疲劳的一个特定标记。总之,我们的研究结果表明,对单个叙述性自由言语任务的自动语音分析为疲劳评估提供了一种客观、生态有效和低负担的方法。语音分析工具有望应用于临床实践,改善疾病监测和管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信