Sarah Garric, Morgane Ratin, Benoit Gallet, Johan Decelle, Ian Probert, Francisco Rodriguez, Christophe Six
{"title":"Photophysiology of the haploid form of the cryptophyte Teleaulax amphioxeia","authors":"Sarah Garric, Morgane Ratin, Benoit Gallet, Johan Decelle, Ian Probert, Francisco Rodriguez, Christophe Six","doi":"10.1111/jpy.13495","DOIUrl":null,"url":null,"abstract":"<p>Cryptophytes are abundant and ubiquitous microalgae that constitute a major plastid source for kleptoplastidic ciliates and dinoflagellates. Despite their ecological significance, the understanding of their light preferences and photophysiology remains limited. Here, we provide a comprehensive study of the response of the haploid strain <i>Teleaulax amphioxeia</i> (Cr10EHU) to varying light irradiance. This strain is capable of growing under a wide range of irradiance levels, notably by finely tuning the different pigments bound to the membrane light-harvesting proteins. Analysis of the luminal phycoerythrin content revealed remarkable flexibility, with phycoerythrin emerging as a pivotal protein facilitating acclimation to varying light levels. Detailed ultrastructure examinations unveiled that this adaptability was supported by the synthesis of large thylakoidal vesicles, likely enhancing the capture of green photons efficiently under low light, a phenomenon previously undocumented. <i>Teleaulax amphioxeia</i> Cr10EHU effectively regulated light utilization by using a cryptophyte state transition-like process, with a larger amplitude observed under high growth irradiance. Furthermore, our results revealed the establishment of growth irradiance-dependent non-photochemical quenching of fluorescence, likely inducing the dissipation of excess light. This study underscores the particularities and the significant photoadaptability of the plastid of the haploid form of <i>T. amphioxeia</i>. It constitutes a comprehensive photophysiological characterization of the Cr10EHU strain that paves the way for future studies of the kleptoplastidy process.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phycology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jpy.13495","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cryptophytes are abundant and ubiquitous microalgae that constitute a major plastid source for kleptoplastidic ciliates and dinoflagellates. Despite their ecological significance, the understanding of their light preferences and photophysiology remains limited. Here, we provide a comprehensive study of the response of the haploid strain Teleaulax amphioxeia (Cr10EHU) to varying light irradiance. This strain is capable of growing under a wide range of irradiance levels, notably by finely tuning the different pigments bound to the membrane light-harvesting proteins. Analysis of the luminal phycoerythrin content revealed remarkable flexibility, with phycoerythrin emerging as a pivotal protein facilitating acclimation to varying light levels. Detailed ultrastructure examinations unveiled that this adaptability was supported by the synthesis of large thylakoidal vesicles, likely enhancing the capture of green photons efficiently under low light, a phenomenon previously undocumented. Teleaulax amphioxeia Cr10EHU effectively regulated light utilization by using a cryptophyte state transition-like process, with a larger amplitude observed under high growth irradiance. Furthermore, our results revealed the establishment of growth irradiance-dependent non-photochemical quenching of fluorescence, likely inducing the dissipation of excess light. This study underscores the particularities and the significant photoadaptability of the plastid of the haploid form of T. amphioxeia. It constitutes a comprehensive photophysiological characterization of the Cr10EHU strain that paves the way for future studies of the kleptoplastidy process.
期刊介绍:
The Journal of Phycology was founded in 1965 by the Phycological Society of America. All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, taxonomist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems.
All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, acquaculturist, systematist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems.