Wei Chen, Qi Chen, Jianmin Zhang, Yu Zheng, Ying Long
{"title":"Electronic structures and magnetism of MTe2 (M = Cr, V, and Fe) monolayer nanoribbons","authors":"Wei Chen, Qi Chen, Jianmin Zhang, Yu Zheng, Ying Long","doi":"10.1063/5.0223768","DOIUrl":null,"url":null,"abstract":"Inspired by the fabrication of the transition metal dichalcogenide nanoribbons with well-defined atomically precise edges, we study the stability, electronic structures, and magnetism of MTe2 (M = Cr, V, and Fe) monolayer nanoribbons. The calculations indicate that all three types of monolayers can form structurally stable zigzag (ZNR) and armchair (ANR) nanoribbons, which significantly alter the properties of the monolayer films, as shown in Table I. For the zigzag nanoribbons, CrTe2-ZNR transitions from a non-magnetic semiconductor to a ferrimagnetic metal. VTe2-ZNR transforms from a ferromagnetic semiconductor to a ferrimagnetic metal. FeTe2-ZNR mostly maintains the characteristics of the monolayer. For the armchair nanoribbons, CrTe2-ANR exhibits ferrimagnetism. The electrical conductivity is related to the width. CrTe2-ANR with narrow width is semiconducting, while wider ones are metallic. VTe2-ANR displays ferromagnetic or ferrimagnetic metallic behavior depending on the width. FeTe2-ANR with widths larger than 11 remains ferromagnetic metal, while with narrow widths are unstable. In addition, the magnetism of all MTe2 monolayer nanoribbons primarily originates from the 3d transition metal atoms. These findings are essential for applications of MTe2 nanoribbons-based low-dimensional spintronic devices.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIP Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0223768","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Inspired by the fabrication of the transition metal dichalcogenide nanoribbons with well-defined atomically precise edges, we study the stability, electronic structures, and magnetism of MTe2 (M = Cr, V, and Fe) monolayer nanoribbons. The calculations indicate that all three types of monolayers can form structurally stable zigzag (ZNR) and armchair (ANR) nanoribbons, which significantly alter the properties of the monolayer films, as shown in Table I. For the zigzag nanoribbons, CrTe2-ZNR transitions from a non-magnetic semiconductor to a ferrimagnetic metal. VTe2-ZNR transforms from a ferromagnetic semiconductor to a ferrimagnetic metal. FeTe2-ZNR mostly maintains the characteristics of the monolayer. For the armchair nanoribbons, CrTe2-ANR exhibits ferrimagnetism. The electrical conductivity is related to the width. CrTe2-ANR with narrow width is semiconducting, while wider ones are metallic. VTe2-ANR displays ferromagnetic or ferrimagnetic metallic behavior depending on the width. FeTe2-ANR with widths larger than 11 remains ferromagnetic metal, while with narrow widths are unstable. In addition, the magnetism of all MTe2 monolayer nanoribbons primarily originates from the 3d transition metal atoms. These findings are essential for applications of MTe2 nanoribbons-based low-dimensional spintronic devices.
期刊介绍:
AIP Advances is an open access journal publishing in all areas of physical sciences—applied, theoretical, and experimental. All published articles are freely available to read, download, and share. The journal prides itself on the belief that all good science is important and relevant. Our inclusive scope and publication standards make it an essential outlet for scientists in the physical sciences.
AIP Advances is a community-based journal, with a fast production cycle. The quick publication process and open-access model allows us to quickly distribute new scientific concepts. Our Editors, assisted by peer review, determine whether a manuscript is technically correct and original. After publication, the readership evaluates whether a manuscript is timely, relevant, or significant.