Pyridinyl 4-(2-oxoalkylimidazolidin-1-yl)benzenesulfonates and their hydrochloride salts as novel water soluble antimitotic prodrugs bioactivated by cytochrome P450 1A1 in breast cancer cells†
IF 3.597 Q2 Pharmacology, Toxicology and Pharmaceutics
Vincent Ouellette, Chahrazed Bouzriba, Atziri Corin Chavez Alvarez, Quentin Bruxelles, Geneviève Hamel-Côté and Sébastien Fortin
{"title":"Pyridinyl 4-(2-oxoalkylimidazolidin-1-yl)benzenesulfonates and their hydrochloride salts as novel water soluble antimitotic prodrugs bioactivated by cytochrome P450 1A1 in breast cancer cells†","authors":"Vincent Ouellette, Chahrazed Bouzriba, Atziri Corin Chavez Alvarez, Quentin Bruxelles, Geneviève Hamel-Côté and Sébastien Fortin","doi":"10.1039/D4MD00476K","DOIUrl":null,"url":null,"abstract":"<p >We developed first-in-class antimitotic prodrugs phenyl 4-(2-oxo-alkylimidazolidin-1-yl)benzenesulfonates (PAIB-SOs) bioactivated by cytochrome P450 (CYP) 1A1 that are highly selective toward several breast cancer cells. However, they show sparingly water solubility. Therefore, we replaced their phenyl ring B with a substituted pyridinyl group preparing novel pyridinyl 4-(2-oxo-3-alkylimidazolidin-1-yl)benzenesulfonates (PYRAIB-SOs) and their hydrochloride salts. Our results evidence that PYRAIB-SO hydrochloride salts show higher water solubility compared to their neutral and PAIB-SO counterparts by up to 625-fold. PYRAIB-SOs with a nitrogen atom at position 3 of the pyridinyl ring exhibited strong antiproliferative activity (IC<small><sub>50</sub></small>: 0.03–3.3 μM) and high selectivity (8–>1250) toward sensitive CYP1A1-positive breast cancer cells and cells stably transfected with CYP1A1. They induce cell cycle arrest in the G2/M phase and disrupt microtubule dynamic assembly. Enzymatic assays confirmed that CYP1A1 metabolizes PYRAIB-SOs into their active form with <em>in vitro</em> hepatic half-lives (55–120 min) in rodent and human liver microsomes. Overall, this will allow to increase drug concentration for <em>in vivo</em> studies.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 11","pages":" 3728-3745"},"PeriodicalIF":3.5970,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedChemComm","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/md/d4md00476k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
We developed first-in-class antimitotic prodrugs phenyl 4-(2-oxo-alkylimidazolidin-1-yl)benzenesulfonates (PAIB-SOs) bioactivated by cytochrome P450 (CYP) 1A1 that are highly selective toward several breast cancer cells. However, they show sparingly water solubility. Therefore, we replaced their phenyl ring B with a substituted pyridinyl group preparing novel pyridinyl 4-(2-oxo-3-alkylimidazolidin-1-yl)benzenesulfonates (PYRAIB-SOs) and their hydrochloride salts. Our results evidence that PYRAIB-SO hydrochloride salts show higher water solubility compared to their neutral and PAIB-SO counterparts by up to 625-fold. PYRAIB-SOs with a nitrogen atom at position 3 of the pyridinyl ring exhibited strong antiproliferative activity (IC50: 0.03–3.3 μM) and high selectivity (8–>1250) toward sensitive CYP1A1-positive breast cancer cells and cells stably transfected with CYP1A1. They induce cell cycle arrest in the G2/M phase and disrupt microtubule dynamic assembly. Enzymatic assays confirmed that CYP1A1 metabolizes PYRAIB-SOs into their active form with in vitro hepatic half-lives (55–120 min) in rodent and human liver microsomes. Overall, this will allow to increase drug concentration for in vivo studies.
期刊介绍:
Research and review articles in medicinal chemistry and related drug discovery science; the official journal of the European Federation for Medicinal Chemistry.
In 2020, MedChemComm will change its name to RSC Medicinal Chemistry. Issue 12, 2019 will be the last issue as MedChemComm.