Twisted Kähler–Einstein metrics on flag varieties

IF 0.8 3区 数学 Q2 MATHEMATICS
Eder M. Correa, Lino Grama
{"title":"Twisted Kähler–Einstein metrics on flag varieties","authors":"Eder M. Correa,&nbsp;Lino Grama","doi":"10.1002/mana.202300553","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present a description of invariant twisted Kähler–Einstein (tKE) metrics on flag varieties. Additionally, we delve into the applications of the concepts utilized in proving our main result, particularly concerning the existence of the invariant twisted constant scalar curvature Kähler metrics. Moreover, we provide a precise description of the greatest Ricci lower bound for arbitrary Kähler classes on flag varieties. From this description, we establish a sequence of inequalities linked to optimal upper bounds for the volume of Kähler metrics, relying solely on tools derived from the Lie theory. Further, we illustrate our main results through various examples, encompassing full flag varieties, the projectivization of the tangent bundle of <span></span><math>\n <semantics>\n <msup>\n <mi>P</mi>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <annotation>${\\mathbb {P}}^{n+1}$</annotation>\n </semantics></math>, and families of flag varieties with a Picard number 2.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300553","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a description of invariant twisted Kähler–Einstein (tKE) metrics on flag varieties. Additionally, we delve into the applications of the concepts utilized in proving our main result, particularly concerning the existence of the invariant twisted constant scalar curvature Kähler metrics. Moreover, we provide a precise description of the greatest Ricci lower bound for arbitrary Kähler classes on flag varieties. From this description, we establish a sequence of inequalities linked to optimal upper bounds for the volume of Kähler metrics, relying solely on tools derived from the Lie theory. Further, we illustrate our main results through various examples, encompassing full flag varieties, the projectivization of the tangent bundle of P n + 1 ${\mathbb {P}}^{n+1}$ , and families of flag varieties with a Picard number 2.

旗变体上的扭曲凯勒-爱因斯坦度量
在本文中,我们描述了旗变上的不变扭曲凯勒-爱因斯坦(tKE)度量。此外,我们还深入探讨了在证明我们的主要结果时所使用的概念的应用,特别是关于不变扭曲恒定标量曲率凯勒度量的存在。此外,我们还精确地描述了旗变上任意凯勒类的最大利玛窦下界。从这一描述出发,我们建立了一系列与凯勒度量的最优上界相关的不等式,完全依赖于从李理论中派生出来的工具。此外,我们还通过各种例子来说明我们的主要结果,包括全旗变体、Ⅳ的切线束的投影化以及皮卡数为 2 的旗变体族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信