A 1024-Channel Simultaneous Electrophysiological and Electrochemical Neural Recording System With In-Pixel Digitization and Crosstalk Compensation

IF 4.9
Xinguo Wang;Songyu Han;Peng Yan;Yang Lin;Chen Wang;Lei Qian;Pujia Xing;Yue Cao;Xinglei Song;Guoxing Wang;Timothy G. Constandinou;Yan Liu
{"title":"A 1024-Channel Simultaneous Electrophysiological and Electrochemical Neural Recording System With In-Pixel Digitization and Crosstalk Compensation","authors":"Xinguo Wang;Songyu Han;Peng Yan;Yang Lin;Chen Wang;Lei Qian;Pujia Xing;Yue Cao;Xinglei Song;Guoxing Wang;Timothy G. Constandinou;Yan Liu","doi":"10.1109/TBCAS.2024.3460388","DOIUrl":null,"url":null,"abstract":"Simultaneous electrophysiological and chemical recording allows for multi-modal neural instrumentation and provides insights into chemical synapses and ion channels across the cell membrane. However, inter-modal interference can hinder highly synchronized recording in large-scale systems with high temporal and spatial resolution. In this work, we propose a 1024-channel lab-on-CMOS system for dual-modal neural recording with in-pixel digitization and interference suppression. A foreground calibration scheme with tunable capacitance is implemented in-pixel to compensate for the crosstalk between electrical and chemical recording. Active pixels for both electrical and chemical modalities are designed based on a pulse width modulation (PWM) analog-to-digital conversion scheme. CMOS-compatible post-processing is implemented to realize in-pixel electrodes and chemical sensing membranes. The prototype, implemented in a 180 nm CMOS technology, occupies a total area of 33 mm<sup>2</sup> with 1024 pixels, and each unit pixel includes one electrical recording site and two chemical recording sites, with dimensions of 150 <inline-formula><tex-math>$\\mu$</tex-math></inline-formula>m <inline-formula><tex-math>$\\times$</tex-math></inline-formula> 130 <inline-formula><tex-math>$\\mu$</tex-math></inline-formula>m. The total system power consumption is 19.68 mW at a frame rate of 9k and 3k for electrical and chemical imaging respectively. The <italic>in-vitro</i> experiment demonstrated the concurrent high density electrophysilogical and electrochemical recording with sub millisecond temporal resolution.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"19 3","pages":"549-561"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10680349/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Simultaneous electrophysiological and chemical recording allows for multi-modal neural instrumentation and provides insights into chemical synapses and ion channels across the cell membrane. However, inter-modal interference can hinder highly synchronized recording in large-scale systems with high temporal and spatial resolution. In this work, we propose a 1024-channel lab-on-CMOS system for dual-modal neural recording with in-pixel digitization and interference suppression. A foreground calibration scheme with tunable capacitance is implemented in-pixel to compensate for the crosstalk between electrical and chemical recording. Active pixels for both electrical and chemical modalities are designed based on a pulse width modulation (PWM) analog-to-digital conversion scheme. CMOS-compatible post-processing is implemented to realize in-pixel electrodes and chemical sensing membranes. The prototype, implemented in a 180 nm CMOS technology, occupies a total area of 33 mm2 with 1024 pixels, and each unit pixel includes one electrical recording site and two chemical recording sites, with dimensions of 150 $\mu$m $\times$ 130 $\mu$m. The total system power consumption is 19.68 mW at a frame rate of 9k and 3k for electrical and chemical imaging respectively. The in-vitro experiment demonstrated the concurrent high density electrophysilogical and electrochemical recording with sub millisecond temporal resolution.
具有像素内数字化和串扰补偿功能的 1024 通道同步电生理和电化学神经记录系统
同时进行的电生理和化学记录允许多模态神经仪器,并提供跨细胞膜的化学突触和离子通道的见解。然而,在高时间和空间分辨率的大尺度系统中,模态间干扰会阻碍高同步记录。在这项工作中,我们提出了一个1024通道cmos实验室系统,用于双模态神经记录,具有像素内数字化和干扰抑制。为了补偿电记录和化学记录之间的串扰,在像素内实现了一种具有可调电容的前景校准方案。电学和化学模式的有源像素是基于脉冲宽度调制(PWM)模数转换方案设计的。采用cmos兼容后处理技术实现像素内电极和化学传感膜。该原型采用180nm CMOS技术实现,总面积为33mm2,像素为1024,每个单位像素包括一个电记录位点和两个化学记录位点,尺寸为150 $\mu$m $ × 130 $\mu$m $。在帧率为9k和3k时,电气成像和化学成像的总系统功耗分别为19.68 mW。体外实验验证了亚毫秒时间分辨率的高密度电生理和电化学同步记录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信