Xiang Li, Elena Bykova, Denis Vasiukov, Georgios Aprilis, Stella Chariton, Valerio Cerantola, Maxim Bykov, Susanne Müller, Anna Pakhomova, Fariia I. Akbar, Elena Mukhina, Innokenty Kantor, Konstantin Glazyrin, Davide Comboni, Aleksandr I. Chumakov, Catherine McCammon, Leonid Dubrovinsky, Carmen Sanchez-Valle, Ilya Kupenko
{"title":"Monoclinic distortion and magnetic transitions in FeO under pressure and temperature","authors":"Xiang Li, Elena Bykova, Denis Vasiukov, Georgios Aprilis, Stella Chariton, Valerio Cerantola, Maxim Bykov, Susanne Müller, Anna Pakhomova, Fariia I. Akbar, Elena Mukhina, Innokenty Kantor, Konstantin Glazyrin, Davide Comboni, Aleksandr I. Chumakov, Catherine McCammon, Leonid Dubrovinsky, Carmen Sanchez-Valle, Ilya Kupenko","doi":"10.1038/s42005-024-01797-1","DOIUrl":null,"url":null,"abstract":"Fe1-xO, although chemically simple, possesses a complex structural and magnetic phase diagram. The crystal structures of Fe1-xO and its magnetic properties at extreme conditions are still a matter of debate. Here, we performed a systematic investigation on Fe0.94O up to 94 GPa and 1700 K using synchrotron X-ray diffraction and synchrotron Mössbauer source spectroscopy. We observe a transition of Fe0.94O to the monoclinic phases above 40 GPa and at high temperatures and use the group theory analysis of the observed phases to discuss their properties and their relation to the ambient pressure phases. The Mössbauer spectra of the rhombohedral and the room temperature monoclinic phase contain a component attributed to Fe2.5+, caused by the electron exchange between the Fe3+ defect and neighboring Fe2+ atoms. Our results present a structural and magnetic transitional pressure-temperature diagram of Fe1-xO and show the complex physicochemical properties of simple Fe1-xO binary oxide under extreme conditions. This work concerns a systematic study of Fe1-xO employing complementary methods of powder and single-crystal X-ray diffraction and synchrotron Mössbauer source spectroscopy up to 94 GPa and 1700 K. It presents a structural and magnetic transitional pressure-temperature diagram of Fe1-xO and demonstrates the complex physicochemical properties of simple Fe1-xO binary oxide under extreme conditions.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-11"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01797-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01797-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Fe1-xO, although chemically simple, possesses a complex structural and magnetic phase diagram. The crystal structures of Fe1-xO and its magnetic properties at extreme conditions are still a matter of debate. Here, we performed a systematic investigation on Fe0.94O up to 94 GPa and 1700 K using synchrotron X-ray diffraction and synchrotron Mössbauer source spectroscopy. We observe a transition of Fe0.94O to the monoclinic phases above 40 GPa and at high temperatures and use the group theory analysis of the observed phases to discuss their properties and their relation to the ambient pressure phases. The Mössbauer spectra of the rhombohedral and the room temperature monoclinic phase contain a component attributed to Fe2.5+, caused by the electron exchange between the Fe3+ defect and neighboring Fe2+ atoms. Our results present a structural and magnetic transitional pressure-temperature diagram of Fe1-xO and show the complex physicochemical properties of simple Fe1-xO binary oxide under extreme conditions. This work concerns a systematic study of Fe1-xO employing complementary methods of powder and single-crystal X-ray diffraction and synchrotron Mössbauer source spectroscopy up to 94 GPa and 1700 K. It presents a structural and magnetic transitional pressure-temperature diagram of Fe1-xO and demonstrates the complex physicochemical properties of simple Fe1-xO binary oxide under extreme conditions.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.