Zirui Xiao, Jian Li, Kaiping Xue, Nenghai Yu, Ruidong Li, Qibin Sun, Jun Lu
{"title":"Purification scheduling control for throughput maximization in quantum networks","authors":"Zirui Xiao, Jian Li, Kaiping Xue, Nenghai Yu, Ruidong Li, Qibin Sun, Jun Lu","doi":"10.1038/s42005-024-01796-2","DOIUrl":null,"url":null,"abstract":"Quantum networks can establish End-to-End (E2E) entanglement connections between two arbitrary nodes with desired entanglement fidelity by performing entanglement purification to support quantum applications reliably. The existing works mainly focus on link-level purification scheduling and lack consideration of purifications at network-level, which fails to offer an effective solution for concurrent requests, resulting in low throughput. However, efficiently allocating scarce resources to purify entanglement for concurrent requests remains a critical but unsolved problem. To address this problem, we explore the purification resource scheduling problem from a network-level perspective. We analyze the cost of purification, design the E2E fidelity calculation method in detail, and propose an approach called Purification Scheduling Control (PSC). The basic idea of PSC is to determine the appropriate purification through jointly optimizing purification and resource allocation processes based on conflict avoidance. We conduct extensive experiments that show that PSC can maximize throughput under the fidelity requirement. In quantum networks, entanglement purification is required to ensure that the E2E fidelity of the entanglement connections can support quantum applications reliably. Here, the authors explore the purification resource scheduling problem from a network-level perspective by jointly optimizing purification and resource allocation processes to maximize the throughput under the fidelity requirement.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-8"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01796-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01796-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum networks can establish End-to-End (E2E) entanglement connections between two arbitrary nodes with desired entanglement fidelity by performing entanglement purification to support quantum applications reliably. The existing works mainly focus on link-level purification scheduling and lack consideration of purifications at network-level, which fails to offer an effective solution for concurrent requests, resulting in low throughput. However, efficiently allocating scarce resources to purify entanglement for concurrent requests remains a critical but unsolved problem. To address this problem, we explore the purification resource scheduling problem from a network-level perspective. We analyze the cost of purification, design the E2E fidelity calculation method in detail, and propose an approach called Purification Scheduling Control (PSC). The basic idea of PSC is to determine the appropriate purification through jointly optimizing purification and resource allocation processes based on conflict avoidance. We conduct extensive experiments that show that PSC can maximize throughput under the fidelity requirement. In quantum networks, entanglement purification is required to ensure that the E2E fidelity of the entanglement connections can support quantum applications reliably. Here, the authors explore the purification resource scheduling problem from a network-level perspective by jointly optimizing purification and resource allocation processes to maximize the throughput under the fidelity requirement.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.