Thermal Decomposition of Hematite Ore Fines in Air

IF 1.9 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Raja A. Anand, Manish M. Pande, Deepoo Kumar, Nurni N. Viswanathan
{"title":"Thermal Decomposition of Hematite Ore Fines in Air","authors":"Raja A. Anand, Manish M. Pande, Deepoo Kumar, Nurni N. Viswanathan","doi":"10.1002/srin.202400200","DOIUrl":null,"url":null,"abstract":"Thermal decomposition of hematite plays an important role during pelletization and the iron fine‐based smelting processes such as HIsarna and flash shaft smelter. The temperature at which pure hematite decomposition occurs depends on the partial pressure of oxygen in the gaseous atmosphere. In the air, that is, at = 0.21, the hematite decomposes at 1386 °C. In the present work, for an ore of a given composition, the effect of gangue on the thermal decomposition of hematite is experimentally determined using thermogravimetric analysis (TGA). A decomposition temperature of 1320 °C is found in the platinum crucible after analyzing the TGA curve. Thermodynamic calculations have been carried out using FactSage8.1 to investigate the effect of gangue on the stability of hematite. Thermodynamics calculations confirm that the hematite present in the ore decomposes at a lower temperature with the increase in the gangue content. Additionally, if gangue content can affect the temperature at which dissociation of hematite occurs, it is expected that the crucible material can also affect the dissociation. Interestingly most of the reported TGA experiments are performed either in alumina crucibles or it was not reported in the literature. Therefore, the effect of crucible materials, namely alumina and platinum, is also investigated.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"65 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"steel research international","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/srin.202400200","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal decomposition of hematite plays an important role during pelletization and the iron fine‐based smelting processes such as HIsarna and flash shaft smelter. The temperature at which pure hematite decomposition occurs depends on the partial pressure of oxygen in the gaseous atmosphere. In the air, that is, at = 0.21, the hematite decomposes at 1386 °C. In the present work, for an ore of a given composition, the effect of gangue on the thermal decomposition of hematite is experimentally determined using thermogravimetric analysis (TGA). A decomposition temperature of 1320 °C is found in the platinum crucible after analyzing the TGA curve. Thermodynamic calculations have been carried out using FactSage8.1 to investigate the effect of gangue on the stability of hematite. Thermodynamics calculations confirm that the hematite present in the ore decomposes at a lower temperature with the increase in the gangue content. Additionally, if gangue content can affect the temperature at which dissociation of hematite occurs, it is expected that the crucible material can also affect the dissociation. Interestingly most of the reported TGA experiments are performed either in alumina crucibles or it was not reported in the literature. Therefore, the effect of crucible materials, namely alumina and platinum, is also investigated.
赤铁矿粉在空气中的热分解
赤铁矿的热分解在球团矿和铁精矿冶炼过程(如 HIsarna 和闪速竖炉冶炼)中发挥着重要作用。纯赤铁矿分解的温度取决于气体环境中的氧分压。在空气中,即 0.21 时,赤铁矿的分解温度为 1386 °C。在本研究中,对于给定成分的矿石,使用热重分析法(TGA)通过实验确定了煤矸石对赤铁矿热分解的影响。分析 TGA 曲线后发现,铂坩埚中的分解温度为 1320 °C。使用 FactSage8.1 进行了热力学计算,以研究煤矸石对赤铁矿稳定性的影响。热力学计算证实,随着煤矸石含量的增加,矿石中赤铁矿的分解温度会降低。此外,如果煤矸石含量会影响赤铁矿解离的温度,那么坩埚材料预计也会影响解离。有趣的是,大多数报道的 TGA 实验都是在氧化铝坩埚中进行的,或者文献中没有报道。因此,我们也对坩埚材料(即氧化铝和铂)的影响进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
steel research international
steel research international 工程技术-冶金工程
CiteScore
3.30
自引率
18.20%
发文量
319
审稿时长
1.9 months
期刊介绍: steel research international is a journal providing a forum for the publication of high-quality manuscripts in areas ranging from process metallurgy and metal forming to materials engineering as well as process control and testing. The emphasis is on steel and on materials involved in steelmaking and the processing of steel, such as refractories and slags. steel research international welcomes manuscripts describing basic scientific research as well as industrial research. The journal received a further increased, record-high Impact Factor of 1.522 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)). The journal was formerly well known as "Archiv für das Eisenhüttenwesen" and "steel research"; with effect from January 1, 2006, the former "Scandinavian Journal of Metallurgy" merged with Steel Research International. Hot Topics: -Steels for Automotive Applications -High-strength Steels -Sustainable steelmaking -Interstitially Alloyed Steels -Electromagnetic Processing of Metals -High Speed Forming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信