L. T. Denisova, D. V. Belokopytova, Yu. F. Kargin, G. V. Vasil’ev, N. V. Belousova, V. M. Denisov
{"title":"Synthesis and Thermodynamic Study of CaYb2Ge4O12 and CaLu2Ge4O12 Germanates in the Range 320–1050 K","authors":"L. T. Denisova, D. V. Belokopytova, Yu. F. Kargin, G. V. Vasil’ev, N. V. Belousova, V. M. Denisov","doi":"10.1134/S0036023624601958","DOIUrl":null,"url":null,"abstract":"<p>Germanates CaYb<sub>2</sub>Ge<sub>4</sub>O<sub>12</sub> and CaLu<sub>2</sub>Ge<sub>4</sub>O<sub>12</sub> have been prepared via firing the solid precursor oxides CaO, Yb<sub>2</sub>O<sub>3</sub> (Lu<sub>2</sub>O<sub>3</sub>), and GeO<sub>2</sub> in air at 1223–1423 K. The X-ray diffraction crystal structures of the prepared germanates have been determined. The high-temperature heat capacity in the range 320–1050 K has been measured by differential scanning calorimetry (DSC). The measured heat capacities are well fitted by the Maier–Kelley equation: <i>C</i><sub><i>p</i></sub>(CaYb<sub>2</sub>Ge<sub>4</sub>O<sub>12</sub>) = <span>\\(\\left( {{\\text{416}}{\\text{.4}{\\; \\pm \\;0}}{\\text{.40}}} \\right) + \\left( {{\\text{72}}{\\text{.67}{\\; \\pm \\;2}}{\\text{.30}}} \\right){{ \\times 1}}{{{\\text{0}}}^{{{\\text{-3}}}}}T - \\left( {{\\text{50}}{\\text{.13}{\\; \\pm \\;0}}{\\text{.19}}} \\right){{ \\times 1}}{{{\\text{0}}}^{{\\text{5}}}}T{{~}^{{{\\text{-2}}}}}\\)</span>, and <i>C</i><sub><i>p</i></sub>(CaLu<sub>2</sub>Ge<sub>4</sub>O<sub>12</sub>) = <span>\\(\\left( {{\\text{450}}{\\text{.0}{\\; \\pm \\;1}}{\\text{.75}}} \\right) + \\left( {{\\text{15}}{\\text{.46}{\\; \\pm \\;1}}{\\text{.90}}} \\right){{ \\times 1}}{{{\\text{0}}}^{{{\\text{-3}}}}}T - \\left( {{\\text{78}}{\\text{.67}{\\; \\pm \\;1}}{\\text{.60}}} \\right){{ \\times 1}}{{{\\text{0}}}^{{\\text{5}}}}{{T}^{{~{\\text{-2}}}}}\\)</span>. These results have been used to calculate selected thermodynamic properties of the prepared germanates.</p>","PeriodicalId":762,"journal":{"name":"Russian Journal of Inorganic Chemistry","volume":"69 9","pages":"1346 - 1352"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S0036023624601958","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Germanates CaYb2Ge4O12 and CaLu2Ge4O12 have been prepared via firing the solid precursor oxides CaO, Yb2O3 (Lu2O3), and GeO2 in air at 1223–1423 K. The X-ray diffraction crystal structures of the prepared germanates have been determined. The high-temperature heat capacity in the range 320–1050 K has been measured by differential scanning calorimetry (DSC). The measured heat capacities are well fitted by the Maier–Kelley equation: Cp(CaYb2Ge4O12) = \(\left( {{\text{416}}{\text{.4}{\; \pm \;0}}{\text{.40}}} \right) + \left( {{\text{72}}{\text{.67}{\; \pm \;2}}{\text{.30}}} \right){{ \times 1}}{{{\text{0}}}^{{{\text{-3}}}}}T - \left( {{\text{50}}{\text{.13}{\; \pm \;0}}{\text{.19}}} \right){{ \times 1}}{{{\text{0}}}^{{\text{5}}}}T{{~}^{{{\text{-2}}}}}\), and Cp(CaLu2Ge4O12) = \(\left( {{\text{450}}{\text{.0}{\; \pm \;1}}{\text{.75}}} \right) + \left( {{\text{15}}{\text{.46}{\; \pm \;1}}{\text{.90}}} \right){{ \times 1}}{{{\text{0}}}^{{{\text{-3}}}}}T - \left( {{\text{78}}{\text{.67}{\; \pm \;1}}{\text{.60}}} \right){{ \times 1}}{{{\text{0}}}^{{\text{5}}}}{{T}^{{~{\text{-2}}}}}\). These results have been used to calculate selected thermodynamic properties of the prepared germanates.
期刊介绍:
Russian Journal of Inorganic Chemistry is a monthly periodical that covers the following topics of research: the synthesis and properties of inorganic compounds, coordination compounds, physicochemical analysis of inorganic systems, theoretical inorganic chemistry, physical methods of investigation, chemistry of solutions, inorganic materials, and nanomaterials.