Influence of Rivers, Tides, and Tidal Wetlands on Estuarine Carbonate System Dynamics

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Fei Da, Marjorie A. M. Friedrichs, Pierre St-Laurent, Raymond G. Najjar, Elizabeth H. Shadwick, Edward G. Stets
{"title":"Influence of Rivers, Tides, and Tidal Wetlands on Estuarine Carbonate System Dynamics","authors":"Fei Da, Marjorie A. M. Friedrichs, Pierre St-Laurent, Raymond G. Najjar, Elizabeth H. Shadwick, Edward G. Stets","doi":"10.1007/s12237-024-01421-z","DOIUrl":null,"url":null,"abstract":"<p>Variations in estuarine carbonate chemistry can have critical impacts on marine calcifying organisms, yet the drivers of this variability are difficult to quantify from observations alone, due to the strong spatiotemporal variability of these systems. Terrestrial runoff and wetland processes vary year to year based on local precipitation, and estuarine processes are often strongly modulated by tides. In this study, a 3D-coupled hydrodynamic-biogeochemical model is used to quantify the controls on the carbonate system of a coastal plain estuary, specifically the York River estuary. Experiments were conducted both with and without tidal wetlands. Results show that on average, wetlands account for 20–30% of total alkalinity (TA) and dissolved inorganic carbon (DIC) fluxes into the estuary, and double-estuarine CO<sub>2</sub> outgassing. Strong quasi-monthly variability is driven by the tides and causes fluctuations between net heterotrophy and net autotrophy. On longer time scales, model results show that in wetter years, lower light availability decreases primary production relative to biological respiration (i.e., greater net heterotrophy) resulting in substantial increases in CO<sub>2</sub> outgassing. Additionally, in wetter years, advective exports of DIC and TA to the Chesapeake Bay increase by a factor of three to four, resulting in lower concentrations of DIC and TA within the estuary. Quantifying the impacts of these complex drivers is not only essential for a better understanding of coastal carbon and alkalinity cycling, but also leads to an improved assessment of the health and functioning of coastal ecosystems both in the present day and under future climate change.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s12237-024-01421-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Variations in estuarine carbonate chemistry can have critical impacts on marine calcifying organisms, yet the drivers of this variability are difficult to quantify from observations alone, due to the strong spatiotemporal variability of these systems. Terrestrial runoff and wetland processes vary year to year based on local precipitation, and estuarine processes are often strongly modulated by tides. In this study, a 3D-coupled hydrodynamic-biogeochemical model is used to quantify the controls on the carbonate system of a coastal plain estuary, specifically the York River estuary. Experiments were conducted both with and without tidal wetlands. Results show that on average, wetlands account for 20–30% of total alkalinity (TA) and dissolved inorganic carbon (DIC) fluxes into the estuary, and double-estuarine CO2 outgassing. Strong quasi-monthly variability is driven by the tides and causes fluctuations between net heterotrophy and net autotrophy. On longer time scales, model results show that in wetter years, lower light availability decreases primary production relative to biological respiration (i.e., greater net heterotrophy) resulting in substantial increases in CO2 outgassing. Additionally, in wetter years, advective exports of DIC and TA to the Chesapeake Bay increase by a factor of three to four, resulting in lower concentrations of DIC and TA within the estuary. Quantifying the impacts of these complex drivers is not only essential for a better understanding of coastal carbon and alkalinity cycling, but also leads to an improved assessment of the health and functioning of coastal ecosystems both in the present day and under future climate change.

Abstract Image

河流、潮汐和潮汐湿地对河口碳酸盐系统动力学的影响
河口碳酸盐化学变化会对海洋钙化生物产生重要影响,但由于这些系统具有很强的时空变异性,仅靠观测很难量化这种变异的驱动因素。陆地径流和湿地过程会根据当地降水量逐年变化,而河口过程通常会受到潮汐的强烈调节。本研究采用三维耦合流体力学-生物地球化学模型,对沿海平原河口(特别是约克 河口)碳酸盐系统的控制进行量化。在有潮汐湿地和没有潮汐湿地的情况下都进行了实验。结果表明,湿地平均占进入河口的总碱度(TA)和溶解无机碳(DIC)通量的 20-30%,以及河口二氧化碳排出量的两倍。潮汐驱动着强烈的准月度变化,并导致净异养生物和净自养生物之间的波动。在更长的时间尺度上,模型结果显示,在较潮湿的年份,相对于生物呼吸作用(即更大的净异养),较低的光照可用性会降低初级生产量,从而导致二氧化碳排出量大幅增加。此外,在较潮湿的年份,DIC 和 TA 向切萨皮克湾的平流输出增加了三到四倍,导致河口内 DIC 和 TA 的浓度降低。对这些复杂的驱动因素的影响进行量化,不仅对更好地了解沿岸碳和碱度循环至关重要, 而且有助于更好地评估当前和未来气候变化下沿岸生态系统的健康和功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信