Improved Methods for Retrieval of Chlorophyll Fluorescence from Satellite Observation in the Far-Red Band Using Singular Value Decomposition Algorithm

IF 4.2 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Remote Sensing Pub Date : 2024-09-17 DOI:10.3390/rs16183441
Kewei Zhu, Mingmin Zou, Shuli Sheng, Xuwen Wang, Tianqi Liu, Yongping Cheng, Hui Wang
{"title":"Improved Methods for Retrieval of Chlorophyll Fluorescence from Satellite Observation in the Far-Red Band Using Singular Value Decomposition Algorithm","authors":"Kewei Zhu, Mingmin Zou, Shuli Sheng, Xuwen Wang, Tianqi Liu, Yongping Cheng, Hui Wang","doi":"10.3390/rs16183441","DOIUrl":null,"url":null,"abstract":"Solar-induced chlorophyll fluorescence (SIF) is highly correlated with photosynthesis and can be used for estimating gross primary productivity (GPP) and monitoring vegetation stress. The far-red band of the solar Fraunhofer lines (FLs) is close to the strongest SIF emission peak and is unaffected by chlorophyll absorption, making it suitable for SIF intensity retrieval. In this study, we propose a retrieval window for far-red SIF, significantly enhancing the sensitivity of data-driven methods to SIF signals near 757 nm. This window introduces a weak O2 absorption band based on the FLs window, allowing for better separation of SIF signals from satellite spectra by altering the shape of specific singular vectors. Additionally, a frequency shift correction algorithm based on standard non-shifted reference spectra is proposed to discuss and eliminate the influence of the Doppler effect. SIF intensity retrieval was achieved using data from the GOSAT satellite, and the retrieved SIF was validated using GPP, enhanced vegetation index (EVI) from the MODIS platform, and published GOSAT SIF products. The validation results indicate that the SIF products provided in this study exhibit higher fitting goodness with GPP and EVI at high spatiotemporal resolutions, with improvements ranging from 55% to 129%. At low spatiotemporal resolutions, the SIF product provided in this study shows higher consistency with EVI and GPP spatially.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/rs16183441","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Solar-induced chlorophyll fluorescence (SIF) is highly correlated with photosynthesis and can be used for estimating gross primary productivity (GPP) and monitoring vegetation stress. The far-red band of the solar Fraunhofer lines (FLs) is close to the strongest SIF emission peak and is unaffected by chlorophyll absorption, making it suitable for SIF intensity retrieval. In this study, we propose a retrieval window for far-red SIF, significantly enhancing the sensitivity of data-driven methods to SIF signals near 757 nm. This window introduces a weak O2 absorption band based on the FLs window, allowing for better separation of SIF signals from satellite spectra by altering the shape of specific singular vectors. Additionally, a frequency shift correction algorithm based on standard non-shifted reference spectra is proposed to discuss and eliminate the influence of the Doppler effect. SIF intensity retrieval was achieved using data from the GOSAT satellite, and the retrieved SIF was validated using GPP, enhanced vegetation index (EVI) from the MODIS platform, and published GOSAT SIF products. The validation results indicate that the SIF products provided in this study exhibit higher fitting goodness with GPP and EVI at high spatiotemporal resolutions, with improvements ranging from 55% to 129%. At low spatiotemporal resolutions, the SIF product provided in this study shows higher consistency with EVI and GPP spatially.
利用奇异值分解算法改进从卫星观测数据中获取远红外波段叶绿素荧光的方法
太阳诱导的叶绿素荧光(SIF)与光合作用高度相关,可用于估算总初级生产力(GPP)和监测植被压力。太阳弗劳恩霍夫线(FLs)的远红波段接近最强的 SIF 发射峰,不受叶绿素吸收的影响,因此适合 SIF 强度检索。在这项研究中,我们提出了一个远红外 SIF 的检索窗口,大大提高了数据驱动方法对 757 nm 附近 SIF 信号的灵敏度。该窗口在 FLs 窗口的基础上引入了一个微弱的氧气吸收带,通过改变特定奇异矢量的形状,更好地从卫星光谱中分离出 SIF 信号。此外,还提出了一种基于标准无偏移参考光谱的频移校正算法,以讨论和消除多普勒效应的影响。利用 GOSAT 卫星的数据实现了 SIF 强度检索,并利用 GPP、MODIS 平台的增强植被指数(EVI)和已发布的 GOSAT SIF 产品对检索的 SIF 进行了验证。验证结果表明,在高时空分辨率下,本研究提供的 SIF 产品与 GPP 和 EVI 的拟合度较高,提高了 55% 至 129%。在低时空分辨率下,本研究提供的 SIF 产品与 EVI 和 GPP 的空间一致性更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Remote Sensing
Remote Sensing REMOTE SENSING-
CiteScore
8.30
自引率
24.00%
发文量
5435
审稿时长
20.66 days
期刊介绍: Remote Sensing (ISSN 2072-4292) publishes regular research papers, reviews, letters and communications covering all aspects of the remote sensing process, from instrument design and signal processing to the retrieval of geophysical parameters and their application in geosciences. Our aim is to encourage scientists to publish experimental, theoretical and computational results in as much detail as possible so that results can be easily reproduced. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信