Arivalagan Shabashini, Prasenjit Giri, Sathiaraj Richard, Ahmad Husain, Manas K. Panda, Ganesh Chandra Nandi
{"title":"Tunable Photoresponsive Behavior of Organic Materials by Polymorphic Variation: Topochemical [2 + 2] Cycloaddition vs E–Z Isomerization","authors":"Arivalagan Shabashini, Prasenjit Giri, Sathiaraj Richard, Ahmad Husain, Manas K. Panda, Ganesh Chandra Nandi","doi":"10.1021/acs.cgd.4c00759","DOIUrl":null,"url":null,"abstract":"Molecular crystals that can display stimuli-responsive behavior are a fascinating class of materials that can be used in various advanced technologies. However, designing and developing molecular crystal polymorphs that could respond differently to a single stimulus are still a challenging task. In this article, we report remarkably different photoresponses of the two polymorphs (<b>DMA-α</b> and <b>DMA-β</b>) of a simple donor–acceptor-type organic molecule (<i>E</i>)-3(4-(dimethylamino)phenyl)-2(4-(trifluoromethyl)phenyl)acrylonitrile (<b>DMA</b>). Upon 456 nm light irradiation, <b>DMA-α</b> crystals undergo topochemical [2 + 2] cycloaddition reaction due to favorable stacking of C═C double bonds in the crystal lattice, while <b>DMA-β</b> crystals exhibit <i>E</i>- to <i>Z</i>-isomerization reaction. Furthermore, the emission maxima (λ<sub>max,em</sub>) of both crystals shifted differently due to photoreaction. The origin of the distinct photoreactivities of two polymorphs could be rooted to different molecular packing and intermolecular interactions in the respective crystal lattices. Our work provides an effective strategy to tune the photoreactivity of organic crystalline materials and their potential applications in sensors, actuators, and other optoelectronic devices.","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"19 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.cgd.4c00759","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular crystals that can display stimuli-responsive behavior are a fascinating class of materials that can be used in various advanced technologies. However, designing and developing molecular crystal polymorphs that could respond differently to a single stimulus are still a challenging task. In this article, we report remarkably different photoresponses of the two polymorphs (DMA-α and DMA-β) of a simple donor–acceptor-type organic molecule (E)-3(4-(dimethylamino)phenyl)-2(4-(trifluoromethyl)phenyl)acrylonitrile (DMA). Upon 456 nm light irradiation, DMA-α crystals undergo topochemical [2 + 2] cycloaddition reaction due to favorable stacking of C═C double bonds in the crystal lattice, while DMA-β crystals exhibit E- to Z-isomerization reaction. Furthermore, the emission maxima (λmax,em) of both crystals shifted differently due to photoreaction. The origin of the distinct photoreactivities of two polymorphs could be rooted to different molecular packing and intermolecular interactions in the respective crystal lattices. Our work provides an effective strategy to tune the photoreactivity of organic crystalline materials and their potential applications in sensors, actuators, and other optoelectronic devices.
期刊介绍:
The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials.
Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.