{"title":"Microstructure and properties of underwater in-situ wire-based laser additive manufactured duplex stainless steel","authors":"Congwei Li, Jialei Zhu, Caimei Wang, Caiyan Deng, Lei Cui, Xiaochun Zhang, Chenglu Zhao, Xiangdong Jiao","doi":"10.1080/17452759.2024.2401925","DOIUrl":null,"url":null,"abstract":"A novel underwater in-situ wire-based laser additive manufacturing (ULAM) technology is proposed for the in-service repair of underwater components in nuclear power plant. Duplex stainless steel (DSS) obtained in air and underwater environments were analysed using material characterisation and testing methods. The effects of underwater additive environments on the microstructure evolution, mechanical properties and corrosion resistance of the specimens were investigated. The results show that the laser heat input is consumed to balance the heat loss of the water-cooled base material during the underwater laser additive manufacturing process, leading to a reduction in the heat input to the molten pool. Underwater specimen exhibit a two-phase balance, with small ferrite grain boundary angles, resulting in better tensile strength and corrosion resistance. Laser reheat treatment leads to a phase change in microstructure, which can enhance the microhardness and the tensile strength. The ULAM system can meet the requirements of actual engineering for cladding layer.","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"14 1","pages":""},"PeriodicalIF":12.7000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17452759.2024.2401925","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A novel underwater in-situ wire-based laser additive manufacturing (ULAM) technology is proposed for the in-service repair of underwater components in nuclear power plant. Duplex stainless steel (DSS) obtained in air and underwater environments were analysed using material characterisation and testing methods. The effects of underwater additive environments on the microstructure evolution, mechanical properties and corrosion resistance of the specimens were investigated. The results show that the laser heat input is consumed to balance the heat loss of the water-cooled base material during the underwater laser additive manufacturing process, leading to a reduction in the heat input to the molten pool. Underwater specimen exhibit a two-phase balance, with small ferrite grain boundary angles, resulting in better tensile strength and corrosion resistance. Laser reheat treatment leads to a phase change in microstructure, which can enhance the microhardness and the tensile strength. The ULAM system can meet the requirements of actual engineering for cladding layer.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.