Effect of elastic deformation on squeezing film lubrication properties of soft tribocontacts with microstructured surface

IF 1.5 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Binbin Su, Xianghe Zou, Zhaoxiang Wang, Lirong Huang
{"title":"Effect of elastic deformation on squeezing film lubrication properties of soft tribocontacts with microstructured surface","authors":"Binbin Su, Xianghe Zou, Zhaoxiang Wang, Lirong Huang","doi":"10.1108/ilt-02-2024-0049","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Inspired by the high-friction performance of the soft toe pads of tree frogs, this study aims to investigate the effect of elastic deformation on the lubrication properties of squeezing films inside soft tribocontacts with microstructured surface under wet conditions.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>A one-dimensional hydrodynamic extrusion model was used to study the film lubrication characteristics of conformal contact. The lubrication characteristics of the extruded film, including load-carrying capacity, liquid flow and surface elastic deformation, were obtained through the simultaneously iterative solution of the fluid-governing and deformation equations.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The results show that the hydrodynamic pressure is approximating parabolically and symmetrically distributed in the contact area, and the peak value appears in the center of the extrusion surface. Elastic deformation increases the thickness of the liquid film, weakens the bearing capacity and homogenizes the liquid flow rate of inside soft friction contact. The magnitude of this effect greatly increases as the initial liquid film thickness decreases. Moreover, the elastic deformation directly affects the average film thickness of the extrusion contact. Narrow and shallow microchannels are found to result in a more prominent elastic deformation on the microstructured soft surface.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>These results present a design for soft tribocontacts suitable for submerged or wet environments involving high friction, such as wiper blades, in situ flexible electrons and underwater robots.</p><!--/ Abstract__block -->\n<h3>Peer review</h3>\n<p>The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-02-2024-0049/</p><!--/ Abstract__block -->","PeriodicalId":13523,"journal":{"name":"Industrial Lubrication and Tribology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Lubrication and Tribology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/ilt-02-2024-0049","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

Inspired by the high-friction performance of the soft toe pads of tree frogs, this study aims to investigate the effect of elastic deformation on the lubrication properties of squeezing films inside soft tribocontacts with microstructured surface under wet conditions.

Design/methodology/approach

A one-dimensional hydrodynamic extrusion model was used to study the film lubrication characteristics of conformal contact. The lubrication characteristics of the extruded film, including load-carrying capacity, liquid flow and surface elastic deformation, were obtained through the simultaneously iterative solution of the fluid-governing and deformation equations.

Findings

The results show that the hydrodynamic pressure is approximating parabolically and symmetrically distributed in the contact area, and the peak value appears in the center of the extrusion surface. Elastic deformation increases the thickness of the liquid film, weakens the bearing capacity and homogenizes the liquid flow rate of inside soft friction contact. The magnitude of this effect greatly increases as the initial liquid film thickness decreases. Moreover, the elastic deformation directly affects the average film thickness of the extrusion contact. Narrow and shallow microchannels are found to result in a more prominent elastic deformation on the microstructured soft surface.

Originality/value

These results present a design for soft tribocontacts suitable for submerged or wet environments involving high friction, such as wiper blades, in situ flexible electrons and underwater robots.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-02-2024-0049/

弹性变形对具有微结构表面的软摩擦接触挤压膜润滑特性的影响
目的受树蛙软趾垫高摩擦性能的启发,本研究旨在探讨弹性变形对潮湿条件下具有微结构表面的软摩擦接触件内部挤压薄膜润滑特性的影响。通过同时迭代求解流体控制方程和变形方程,得到了挤压薄膜的润滑特性,包括承载能力、液体流动和表面弹性变形。弹性变形增加了液膜厚度,削弱了承载能力,并使软摩擦接触内部的液体流速均匀化。随着初始液膜厚度的减小,这种影响的程度会大大增加。此外,弹性变形直接影响挤压接触的平均膜厚。这些结果提出了一种软摩擦接触的设计方案,适用于涉及高摩擦的浸没或潮湿环境,例如雨刷片、原位柔性电子和水下机器人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Industrial Lubrication and Tribology
Industrial Lubrication and Tribology 工程技术-工程:机械
CiteScore
3.00
自引率
18.80%
发文量
129
审稿时长
1.9 months
期刊介绍: Industrial Lubrication and Tribology provides a broad coverage of the materials and techniques employed in tribology. It contains a firm technical news element which brings together and promotes best practice in the three disciplines of tribology, which comprise lubrication, wear and friction. ILT also follows the progress of research into advanced lubricants, bearings, seals, gears and related machinery parts, as well as materials selection. A double-blind peer review process involving the editor and other subject experts ensures the content''s validity and relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信