{"title":"Donor-only substituted benzene achieves thermally activated delayed fluorescence","authors":"Masashi Mamada, Sawako Yada, Masahiro Hayakawa, Ryota Uchida, Hiroshi Katagiri, Takuji Hatakeyama, Chihaya Adachi","doi":"10.1038/s42004-024-01301-4","DOIUrl":null,"url":null,"abstract":"Thermally activated delayed fluorescence (TADF) is a promising mechanism for harvesting triplet excitons in organic light-emitting diodes (OLEDs). The donor–acceptor (D–A) design is the most conventional strategy for developing efficient TADF emitters. A subsequently emerged approach, known as the multiple resonance (MR) effect, also employs electron-donating and electron-withdrawing functional groups. Thus, developing TADF materials has traditionally relied on ingenuity in selecting and combining two functional units. Here, we have realized a TADF molecule by utilizing only a carbazole donor moiety. This molecule is an unusual example in the family of TADF materials and offers better insight into the electronic structures in the excited states for luminescent materials. Thermally activated delayed fluorescence (TADF) is a promising mechanism for harvesting triplet excitons in organic light-emitting diodes, but TADF molecules typically rely on multiple functional units, such as both an electron donor and an electron acceptor. Here, the authors develop a TADF molecule using only benzene and carbazole donor moieties.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-6"},"PeriodicalIF":5.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42004-024-01301-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s42004-024-01301-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Thermally activated delayed fluorescence (TADF) is a promising mechanism for harvesting triplet excitons in organic light-emitting diodes (OLEDs). The donor–acceptor (D–A) design is the most conventional strategy for developing efficient TADF emitters. A subsequently emerged approach, known as the multiple resonance (MR) effect, also employs electron-donating and electron-withdrawing functional groups. Thus, developing TADF materials has traditionally relied on ingenuity in selecting and combining two functional units. Here, we have realized a TADF molecule by utilizing only a carbazole donor moiety. This molecule is an unusual example in the family of TADF materials and offers better insight into the electronic structures in the excited states for luminescent materials. Thermally activated delayed fluorescence (TADF) is a promising mechanism for harvesting triplet excitons in organic light-emitting diodes, but TADF molecules typically rely on multiple functional units, such as both an electron donor and an electron acceptor. Here, the authors develop a TADF molecule using only benzene and carbazole donor moieties.
期刊介绍:
Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.