AnnoMate: Exploring and annotating integrated molecular data through custom interactive visualizations

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Claudia Chu, Conor Messer, Samantha Van Seters, Mendy Miller, Kristy Schlueter-Kuck, Gad Getz
{"title":"AnnoMate: Exploring and annotating integrated molecular data through custom interactive visualizations","authors":"Claudia Chu, Conor Messer, Samantha Van Seters, Mendy Miller, Kristy Schlueter-Kuck, Gad Getz","doi":"10.1016/j.patter.2024.101060","DOIUrl":null,"url":null,"abstract":"<p>Manual review is an integral part of any study. As the cost of data generation continues to decrease, the rapid rise in large-scale multi-omic studies calls for a modular, flexible framework to perform what is currently a tedious, error-prone process. We developed <em>AnnoMate</em>, a Python-based package built with Plotly Dash that creates interactive, highly customizable dashboards for reviewing and annotating data. Its object-oriented framework enables easy development and modification of custom dashboards for specific manual review tasks. We utilized this framework to implement “reviewer” dashboards for various tasks often performed in cancer genome sequencing studies.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.101060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Manual review is an integral part of any study. As the cost of data generation continues to decrease, the rapid rise in large-scale multi-omic studies calls for a modular, flexible framework to perform what is currently a tedious, error-prone process. We developed AnnoMate, a Python-based package built with Plotly Dash that creates interactive, highly customizable dashboards for reviewing and annotating data. Its object-oriented framework enables easy development and modification of custom dashboards for specific manual review tasks. We utilized this framework to implement “reviewer” dashboards for various tasks often performed in cancer genome sequencing studies.

AnnoMate:通过定制的交互式可视化方式探索和注释集成的分子数据
人工审核是任何研究不可或缺的一部分。随着数据生成成本的不断降低,大规模多组学研究的迅速增加需要一个模块化、灵活的框架来完成目前繁琐、容易出错的过程。我们开发了 AnnoMate,这是一个基于 Python 的软件包,使用 Plotly Dash 创建交互式、高度可定制的仪表板,用于审查和注释数据。其面向对象的框架可轻松开发和修改用于特定人工审核任务的自定义仪表盘。我们利用这个框架为癌症基因组测序研究中经常执行的各种任务实现了 "审阅者 "仪表盘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信