The rigidity of minimal Legendrian submanifolds in the Euclidean spheres via eigenvalues of fundamental matrices

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Pei-Yi Wu, Ling Yang
{"title":"The rigidity of minimal Legendrian submanifolds in the Euclidean spheres via eigenvalues of fundamental matrices","authors":"Pei-Yi Wu, Ling Yang","doi":"10.1007/s00526-024-02822-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the rigidity problem for compact minimal Legendrian submanifolds in the unit Euclidean spheres via eigenvalues of fundamental matrices, which measure the squared norms of the second fundamental form on all normal directions. By using Lu’s inequality (Lu in J Funct Anal 261:1284–1308, 2011) on the upper bound of the squared norm of Lie brackets of symmetric matrices, we establish an optimal pinching theorem for such submanifolds of all dimensions, giving a new characterization for the Calabi tori. This pinching condition can also be described by the eigenvalues of the Ricci curvature tensor. Moreover, when the third large eigenvalue of the fundamental matrix vanishes everywhere, we get an optimal rigidity theorem under a weaker pinching condition.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02822-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the rigidity problem for compact minimal Legendrian submanifolds in the unit Euclidean spheres via eigenvalues of fundamental matrices, which measure the squared norms of the second fundamental form on all normal directions. By using Lu’s inequality (Lu in J Funct Anal 261:1284–1308, 2011) on the upper bound of the squared norm of Lie brackets of symmetric matrices, we establish an optimal pinching theorem for such submanifolds of all dimensions, giving a new characterization for the Calabi tori. This pinching condition can also be described by the eigenvalues of the Ricci curvature tensor. Moreover, when the third large eigenvalue of the fundamental matrix vanishes everywhere, we get an optimal rigidity theorem under a weaker pinching condition.

通过基本矩阵的特征值求欧几里得球中最小 Legendrian 子满足的刚性
本文通过基本矩阵的特征值研究单位欧几里得球内紧凑极小 Legendrian 子满面的刚性问题,基本矩阵的特征值度量所有法向上第二基本形式的平方法。利用卢氏不等式(Lu in J Funct Anal 261:1284-1308, 2011)关于对称矩阵的列括号平方法的上界,我们为这种所有维度的子平面建立了最优捏合定理,给出了卡拉比环形的新特征。这种捏合条件也可以用里奇曲率张量的特征值来描述。此外,当基本矩阵的第三个大特征值在任何地方都消失时,我们会在一个较弱的捏合条件下得到一个最优刚性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信