{"title":"Application of Self-Polishing Copolymer and Tin-Free Nanotechnology Paint for Ships","authors":"Yushi Wang, Cheunghwa Hsu, Guanhong Pan, Chenghao Chen","doi":"10.3390/jmse12091662","DOIUrl":null,"url":null,"abstract":"During a ship’s voyage, it is difficult to maintain its hull, and prolonged exposure to seawater can lead to the attachment of marine organisms, which can negatively impact the ship’s speed. The original self-polishing copolymer was a tributyltin-containing paint used for applying two layers of protective coating onto a ship’s bottom plate. According to International Maritime Organization (abbreviated as IMO) regulations, users are no longer allowed to use paints containing tributyltin. Therefore, manufacturers have developed a tributyltin-free paint, known as tin-free nanotechnology paint, which can be used as a replacement for the base coat on ship bottom plates. This study involves the use of a self-polishing copolymer spray and tin-free nanotechnology paint. A model coated with these two types of paint will be observed underwater to study the growth of marine organisms. Additionally, fuel consumption will be analyzed through underwater inspections and sea trials. Based on the experimental data, it is known that tin-free nanotechnology paint can significantly reduce the need for repairs in factories and greatly decrease maintenance costs when compared to self-polishing copolymers.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":"38 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse12091662","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
During a ship’s voyage, it is difficult to maintain its hull, and prolonged exposure to seawater can lead to the attachment of marine organisms, which can negatively impact the ship’s speed. The original self-polishing copolymer was a tributyltin-containing paint used for applying two layers of protective coating onto a ship’s bottom plate. According to International Maritime Organization (abbreviated as IMO) regulations, users are no longer allowed to use paints containing tributyltin. Therefore, manufacturers have developed a tributyltin-free paint, known as tin-free nanotechnology paint, which can be used as a replacement for the base coat on ship bottom plates. This study involves the use of a self-polishing copolymer spray and tin-free nanotechnology paint. A model coated with these two types of paint will be observed underwater to study the growth of marine organisms. Additionally, fuel consumption will be analyzed through underwater inspections and sea trials. Based on the experimental data, it is known that tin-free nanotechnology paint can significantly reduce the need for repairs in factories and greatly decrease maintenance costs when compared to self-polishing copolymers.
期刊介绍:
Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.