Pressure-robust approximation of the incompressible Navier–Stokes equations in a rotating frame of reference

IF 1.6 3区 数学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Medine Demir, Volker John
{"title":"Pressure-robust approximation of the incompressible Navier–Stokes equations in a rotating frame of reference","authors":"Medine Demir, Volker John","doi":"10.1007/s10543-024-01037-6","DOIUrl":null,"url":null,"abstract":"<p>A pressure-robust space discretization of the incompressible Navier–Stokes equations in a rotating frame of reference is considered. The discretization employs divergence-free, <span>\\(H^1\\)</span>-conforming mixed finite element methods like Scott–Vogelius pairs. An error estimate for the velocity is derived that tracks the dependency of the error bound on the coefficients of the problem, in particular on the angular velocity. Numerical examples support the theoretical results.</p>","PeriodicalId":55351,"journal":{"name":"BIT Numerical Mathematics","volume":"75 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BIT Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10543-024-01037-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

A pressure-robust space discretization of the incompressible Navier–Stokes equations in a rotating frame of reference is considered. The discretization employs divergence-free, \(H^1\)-conforming mixed finite element methods like Scott–Vogelius pairs. An error estimate for the velocity is derived that tracks the dependency of the error bound on the coefficients of the problem, in particular on the angular velocity. Numerical examples support the theoretical results.

Abstract Image

旋转参照系中不可压缩纳维-斯托克斯方程的压力近似法
研究考虑了旋转参照系下不可压缩纳维-斯托克斯方程的压力空间离散化。离散化采用无发散、(H^1\)-符合混合有限元方法,如 Scott-Vogelius 对。得出的速度误差估计值跟踪了误差约束对问题系数的依赖性,特别是对角速度的依赖性。数值实例支持理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BIT Numerical Mathematics
BIT Numerical Mathematics 数学-计算机:软件工程
CiteScore
2.90
自引率
0.00%
发文量
38
审稿时长
6 months
期刊介绍: The journal BIT has been published since 1961. BIT publishes original research papers in the rapidly developing field of numerical analysis. The essential areas covered by BIT are development and analysis of numerical methods as well as the design and use of algorithms for scientific computing. Topics emphasized by BIT include numerical methods in approximation, linear algebra, and ordinary and partial differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信