{"title":"Estimation of Source Range and Location Using Ship-Radiated Noise Measured by Two Vertical Line Arrays with a Feed-Forward Neural Network","authors":"Moon Ju Jo, Jee Woong Choi, Dong-Gyun Han","doi":"10.3390/jmse12091665","DOIUrl":null,"url":null,"abstract":"Machine learning-based source range estimation is a promising method for enhancing the performance of tracking both the dynamic and static positions of targets in the underwater acoustic environment using extensive training data. This study constructed a machine learning model for source range estimation using ship-radiated noise recorded by two vertical line arrays (VLAs) during the Shallow-water Acoustic Variability Experiment (SAVEX-15), employing the Sample Covariance Matrix (SCM) and the Generalized Cross Correlation (GCC) as input features. A feed-forward neural network (FNN) was used to train the model on the acoustic characteristics of the source at various distances, and the range estimation results indicated that the SCM outperformed the GCC with lower error rates. Additionally, array tilt correction using the array invariant-based method improved range estimation accuracy. The impact of the training data composition corresponding to the bottom depth variation between the source and receivers on range estimation performance was also discussed. Furthermore, the estimated ranges from the two VLA locations were applied to localization using trilateration. Our results confirm that the SCM is the more appropriate feature for the FNN-based source range estimation model compared with the GCC and imply that ocean environment variability should be considered in developing a general-purpose machine learning model for underwater acoustics.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":"29 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse12091665","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning-based source range estimation is a promising method for enhancing the performance of tracking both the dynamic and static positions of targets in the underwater acoustic environment using extensive training data. This study constructed a machine learning model for source range estimation using ship-radiated noise recorded by two vertical line arrays (VLAs) during the Shallow-water Acoustic Variability Experiment (SAVEX-15), employing the Sample Covariance Matrix (SCM) and the Generalized Cross Correlation (GCC) as input features. A feed-forward neural network (FNN) was used to train the model on the acoustic characteristics of the source at various distances, and the range estimation results indicated that the SCM outperformed the GCC with lower error rates. Additionally, array tilt correction using the array invariant-based method improved range estimation accuracy. The impact of the training data composition corresponding to the bottom depth variation between the source and receivers on range estimation performance was also discussed. Furthermore, the estimated ranges from the two VLA locations were applied to localization using trilateration. Our results confirm that the SCM is the more appropriate feature for the FNN-based source range estimation model compared with the GCC and imply that ocean environment variability should be considered in developing a general-purpose machine learning model for underwater acoustics.
期刊介绍:
Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.