Safeguarding Decentralized Social Media: LLM Agents for Automating Community Rule Compliance

Lucio La Cava, Andrea Tagarelli
{"title":"Safeguarding Decentralized Social Media: LLM Agents for Automating Community Rule Compliance","authors":"Lucio La Cava, Andrea Tagarelli","doi":"arxiv-2409.08963","DOIUrl":null,"url":null,"abstract":"Ensuring content compliance with community guidelines is crucial for\nmaintaining healthy online social environments. However, traditional\nhuman-based compliance checking struggles with scaling due to the increasing\nvolume of user-generated content and a limited number of moderators. Recent\nadvancements in Natural Language Understanding demonstrated by Large Language\nModels unlock new opportunities for automated content compliance verification.\nThis work evaluates six AI-agents built on Open-LLMs for automated rule\ncompliance checking in Decentralized Social Networks, a challenging environment\ndue to heterogeneous community scopes and rules. Analyzing over 50,000 posts\nfrom hundreds of Mastodon servers, we find that AI-agents effectively detect\nnon-compliant content, grasp linguistic subtleties, and adapt to diverse\ncommunity contexts. Most agents also show high inter-rater reliability and\nconsistency in score justification and suggestions for compliance. Human-based\nevaluation with domain experts confirmed the agents' reliability and\nusefulness, rendering them promising tools for semi-automated or\nhuman-in-the-loop content moderation systems.","PeriodicalId":501043,"journal":{"name":"arXiv - PHYS - Physics and Society","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Physics and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ensuring content compliance with community guidelines is crucial for maintaining healthy online social environments. However, traditional human-based compliance checking struggles with scaling due to the increasing volume of user-generated content and a limited number of moderators. Recent advancements in Natural Language Understanding demonstrated by Large Language Models unlock new opportunities for automated content compliance verification. This work evaluates six AI-agents built on Open-LLMs for automated rule compliance checking in Decentralized Social Networks, a challenging environment due to heterogeneous community scopes and rules. Analyzing over 50,000 posts from hundreds of Mastodon servers, we find that AI-agents effectively detect non-compliant content, grasp linguistic subtleties, and adapt to diverse community contexts. Most agents also show high inter-rater reliability and consistency in score justification and suggestions for compliance. Human-based evaluation with domain experts confirmed the agents' reliability and usefulness, rendering them promising tools for semi-automated or human-in-the-loop content moderation systems.
保护分散的社交媒体:自动遵守社区规则的 LLM 代理
确保内容符合社区指导原则对于维护健康的在线社交环境至关重要。然而,由于用户生成的内容数量不断增加,而版主人数有限,传统的基于人工的合规性检查难以扩展。大型语言模型(Large LanguageModels)在自然语言理解方面取得的最新进展为自动内容合规性检查带来了新的机遇。这项工作评估了基于开放式大型语言模型(Open-LLMs)的六种人工智能代理,用于去中心化社交网络中的自动规则合规性检查。通过分析来自数百个 Mastodon 服务器的 50,000 多个帖子,我们发现人工智能代理可以有效地检测出不合规的内容,掌握语言的微妙之处,并适应不同的社区语境。大多数人工智能代理在评分理由和合规建议方面也表现出较高的互评可靠性和一致性。由领域专家进行的人工评估证实了人工智能代理的可靠性和实用性,使它们成为半自动化或人机交互内容审核系统的理想工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信