Durable silver nanowire transparent electrodes enabled by biorenewable nanocoating using chitin and cellulose nanofibers for flexible electronics†

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yoo-Bin Kwon, Seongwon Cho, Dal-Hee Min and Young-Kwan Kim
{"title":"Durable silver nanowire transparent electrodes enabled by biorenewable nanocoating using chitin and cellulose nanofibers for flexible electronics†","authors":"Yoo-Bin Kwon, Seongwon Cho, Dal-Hee Min and Young-Kwan Kim","doi":"10.1039/D4NH00285G","DOIUrl":null,"url":null,"abstract":"<p >The protection of silver nanowire (AgNW) networks is crucial for enhancing their durability and applicability to flexible electronics. In this study, we present a sustainable and efficient strategy to protect AgNW-based flexible transparent electrodes (FTEs) using a layer-by-layer (LBL) assembly of biorenewable chitin and cellulose nanofibers (Chi and Cell). These uniform LBL-assembled thin films were successfully fabricated on AgNW FTEs due to their opposite surface charges. The resulting (Chi/Cell)<small><sub><em>n</em></sub></small> bilayers, where <em>n</em> is the number of bilayers, did not degrade the optoelectrical properties of AgNW FTEs and significantly enhanced their stability under various harsh conditions. The optimized (Chi/Cell)<small><sub>10</sub></small>@Al-AgNW FTEs exhibited comprehensive stability against UV/O<small><sub>3</sub></small> treatment for 40 min, thermal treatment at 250 °C for 350 min, Na<small><sub>2</sub></small>S (1%), HCl (10%), and NH<small><sub>3</sub></small> (30%) treatments for 3, 30, and 105 min, respectively, sonication for 300 min, and 10 000 cycles of bending test. Therefore, the (Chi/Cell)<small><sub>10</sub></small>@Al-AgNW FTEs were successfully applied to transparent heaters (TH) and pressure sensors with remarkably improved applicability, durability, and performance compared to pristine AgNW FTEs, providing a reassuring solution to the stability issues of AgNW-based FTEs.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nh/d4nh00285g","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The protection of silver nanowire (AgNW) networks is crucial for enhancing their durability and applicability to flexible electronics. In this study, we present a sustainable and efficient strategy to protect AgNW-based flexible transparent electrodes (FTEs) using a layer-by-layer (LBL) assembly of biorenewable chitin and cellulose nanofibers (Chi and Cell). These uniform LBL-assembled thin films were successfully fabricated on AgNW FTEs due to their opposite surface charges. The resulting (Chi/Cell)n bilayers, where n is the number of bilayers, did not degrade the optoelectrical properties of AgNW FTEs and significantly enhanced their stability under various harsh conditions. The optimized (Chi/Cell)10@Al-AgNW FTEs exhibited comprehensive stability against UV/O3 treatment for 40 min, thermal treatment at 250 °C for 350 min, Na2S (1%), HCl (10%), and NH3 (30%) treatments for 3, 30, and 105 min, respectively, sonication for 300 min, and 10 000 cycles of bending test. Therefore, the (Chi/Cell)10@Al-AgNW FTEs were successfully applied to transparent heaters (TH) and pressure sensors with remarkably improved applicability, durability, and performance compared to pristine AgNW FTEs, providing a reassuring solution to the stability issues of AgNW-based FTEs.

Abstract Image

Abstract Image

利用甲壳素和纤维素纳米纤维的生物可再生纳米涂层实现用于柔性电子器件的耐用银纳米线透明电极
银纳米线(AgNW)网络的保护对于提高其耐用性和柔性电子产品的适用性至关重要。在本研究中,我们提出了一种可持续的高效策略,利用逐层(LBL)组装的可再生甲壳素和纤维素纳米纤维(Chi 和 Cell)来保护基于 AgNW 的柔性透明电极(FTE)。由于它们的表面电荷相反,因此在 AgNW FTE 上成功制造出了这些均匀的 LBL 组装薄膜。生成的(Chi/Cell)n 双层膜(n 为双层膜的数量)不会降低 AgNW FTE 的光电特性,并显著增强了其在各种苛刻条件下的稳定性。优化后的(Chi/Cell)10@Al-AgNW FTEs 在紫外线/O3 处理 40 分钟、250 ℃ 热处理 350 分钟、Na2S(1%)、HCl(10%)和 NH3(30%)处理 3 分钟、30 分钟和 105 分钟、超声处理 300 分钟和 10 000 次弯曲测试中均表现出全面的稳定性。因此,(Chi/Cell)10@Al-AgNW FTEs 成功应用于透明加热器 (TH) 和压力传感器,与原始 AgNW FTEs 相比,其适用性、耐用性和性能都有显著提高,为解决 AgNW 基 FTEs 的稳定性问题提供了可靠的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信