Tunability of exciton delocalization in DNA Holliday junction-templated indodicarbocyanine 5 (Cy5) dye derivative heterodimers

IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Gissela Pascual, Sebastián Andrés Díaz, Simon Roy, Adam Meares, Matthew Chiriboga, Kimihiro Susumu, Divita Mathur, Paul D. Cunningham, Igor Medintz, Bernard Yurke, William Knowlton, Joseph Melinger, Jeunghoon Lee
{"title":"Tunability of exciton delocalization in DNA Holliday junction-templated indodicarbocyanine 5 (Cy5) dye derivative heterodimers","authors":"Gissela Pascual, Sebastián Andrés Díaz, Simon Roy, Adam Meares, Matthew Chiriboga, Kimihiro Susumu, Divita Mathur, Paul D. Cunningham, Igor Medintz, Bernard Yurke, William Knowlton, Joseph Melinger, Jeunghoon Lee","doi":"10.1039/d4nh00225c","DOIUrl":null,"url":null,"abstract":"We studied the exciton delocalization of indodicarbocyanine 5 dye derivative (Cy5-R) heterodimers templated by DNA Holliday junction (HJ), which was quantified by the exciton hopping parameter <em>J<small><sub>m,n</sub></small></em>. These dyes were modified at the 5 and 5‘ positions of indole rings with substituents (R) H, Cl, tBu, Peg, and hexyloxy (Hex) groups that exhibit different bulkiness and electron-withdrawing/donating capacities. The substituents tune the physical properties of the dyes, such as hydrophobicity (Log P) and solvent-accessible surface area (SASA). We tuned <em>J<small><sub>m,n</sub></small></em> of heterodimers by attaching two Cy5-Rs in adjacent and transverse positions along the DNA-HJ. Adjacent heterodimers exhibited smaller <em>J<small><sub>m,n</sub></small></em> compared to transverse heterodimers, and some adjacent heterodimers displayed a mixture of H- and J-like aggregates. Most heterodimers exhibited <em>J<small><sub>m,n</sub></small></em> values within the ranges of the corresponding homodimers, but some heterodimers displayed synergistic exciton delocalization that resulted in larger <em>J<small><sub>m,n</sub></small></em> compared to their homodimers. We then investigated how chemically distinct Cy5-R conjugated to DNA can interact to create delocalized excitons. We determined that heterodimers involving Cy5-H and Cy5-Cl and a second dye with larger substituents (bulky substituents and large SASA) such as Cy5-Peg, Cy5-Hex, and Cy5-tBu resulted in the larger <em>J<small><sub>m,n</sub></small></em>. The combination provides steric hindrance that optimizes co-facial packing (bulky Cy5-R) with a smaller footprint (small SASA) that maximizes proximity. The results of this study lay a groundwork for rationally optimizing the exciton delocalization in dye aggregates for developing next-generation technologies based on optimized exciton transfer efficiency such as quantum information systems and biomedicine.","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nh00225c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We studied the exciton delocalization of indodicarbocyanine 5 dye derivative (Cy5-R) heterodimers templated by DNA Holliday junction (HJ), which was quantified by the exciton hopping parameter Jm,n. These dyes were modified at the 5 and 5‘ positions of indole rings with substituents (R) H, Cl, tBu, Peg, and hexyloxy (Hex) groups that exhibit different bulkiness and electron-withdrawing/donating capacities. The substituents tune the physical properties of the dyes, such as hydrophobicity (Log P) and solvent-accessible surface area (SASA). We tuned Jm,n of heterodimers by attaching two Cy5-Rs in adjacent and transverse positions along the DNA-HJ. Adjacent heterodimers exhibited smaller Jm,n compared to transverse heterodimers, and some adjacent heterodimers displayed a mixture of H- and J-like aggregates. Most heterodimers exhibited Jm,n values within the ranges of the corresponding homodimers, but some heterodimers displayed synergistic exciton delocalization that resulted in larger Jm,n compared to their homodimers. We then investigated how chemically distinct Cy5-R conjugated to DNA can interact to create delocalized excitons. We determined that heterodimers involving Cy5-H and Cy5-Cl and a second dye with larger substituents (bulky substituents and large SASA) such as Cy5-Peg, Cy5-Hex, and Cy5-tBu resulted in the larger Jm,n. The combination provides steric hindrance that optimizes co-facial packing (bulky Cy5-R) with a smaller footprint (small SASA) that maximizes proximity. The results of this study lay a groundwork for rationally optimizing the exciton delocalization in dye aggregates for developing next-generation technologies based on optimized exciton transfer efficiency such as quantum information systems and biomedicine.
DNA 霍利迪结诱导的吲哚二碳菁 5 (Cy5) 染料衍生物异二聚体中激子脱定位的可调谐性
我们研究了由 DNA 霍利迪接合点(HJ)模板化的吲哚二碳菁 5 染料衍生物(Cy5-R)异二聚体的激子脱定位,并通过激子跳跃参数 Jm,n 对其进行了量化。这些染料在吲哚环的 5 和 5'位置被 H、Cl、tBu、Peg 和己氧基(Hex)取代基修饰,这些取代基表现出不同的体积和电子吸收/捐赠能力。取代基调整了染料的物理性质,如疏水度(Log P)和可溶解表面积(SASA)。我们在 DNA-HJ 的相邻和横向位置连接了两个 Cy5-R,从而调整了异质二聚体的 Jm,n。与横向异二聚体相比,相邻异二聚体的 Jm,n 较小,一些相邻异二聚体显示出 H 型和 J 型的混合聚集。大多数异质二聚体的 Jm,n 值都在相应同质二聚体的范围之内,但有些异质二聚体显示出协同的激子脱定位作用,导致其 Jm,n 比同质二聚体大。随后,我们研究了与 DNA 连接的化学性质不同的 Cy5-R 如何相互作用产生脱ocal 化的激子。我们确定,涉及 Cy5-H 和 Cy5-Cl 的异二聚体以及具有较大取代基(笨重取代基和大 SASA)的第二种染料(如 Cy5-Peg、Cy5-Hex 和 Cy5-tBu)可产生较大的 Jm,n。这种组合提供了立体阻碍,优化了共面填料(体积大的 Cy5-R)和较小的足迹(较小的 SASA),最大限度地提高了接近性。这项研究的结果为合理优化染料聚集体中的激子脱定位奠定了基础,从而开发出基于优化激子传递效率的下一代技术,如量子信息系统和生物医学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Horizons
Nanoscale Horizons Materials Science-General Materials Science
CiteScore
16.30
自引率
1.00%
发文量
141
期刊介绍: Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信