{"title":"An FEA Analysis of Nano-Silica Reinforced Chitosan Based Dental Implant Under Dynamic Loading","authors":"Sambhrant Srivastava, Saroj Kumar Sarangi, Savendra Pratap Singh","doi":"10.1007/s12633-024-03133-2","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the impact of different materials and dental implant-abutment interface models on bone shielding effects, micro-gap formation, and torque loss in abutment screws. Von-Misses stress analysis identifies the MTC model as exhibiting maximum stress transfer for titanium alloy and CFR-PEEK, while the IHC model dominates for C2 bio-composite dental implants. Although material type has minimal influence on stress shielding, the implant-abutment interface model proves crucial. Micro-gap analysis reveals the Optimized dental implant consistently displaying minimal micro-gaps across materials, while the NLD model consistently exhibits maximum micro-gaps. Both material type and interface model significantly influence micro-gap formation. Torque loss in abutment screws varies, with the MTC model consistently experiencing high torque loss and IHC showing minimal loss. The study underscores the importance of considering material properties and interface models in dental implant design, offering valuable insights for the development of reliable dental prosthetics.</p></div>","PeriodicalId":776,"journal":{"name":"Silicon","volume":"16 17","pages":"6055 - 6072"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silicon","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12633-024-03133-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the impact of different materials and dental implant-abutment interface models on bone shielding effects, micro-gap formation, and torque loss in abutment screws. Von-Misses stress analysis identifies the MTC model as exhibiting maximum stress transfer for titanium alloy and CFR-PEEK, while the IHC model dominates for C2 bio-composite dental implants. Although material type has minimal influence on stress shielding, the implant-abutment interface model proves crucial. Micro-gap analysis reveals the Optimized dental implant consistently displaying minimal micro-gaps across materials, while the NLD model consistently exhibits maximum micro-gaps. Both material type and interface model significantly influence micro-gap formation. Torque loss in abutment screws varies, with the MTC model consistently experiencing high torque loss and IHC showing minimal loss. The study underscores the importance of considering material properties and interface models in dental implant design, offering valuable insights for the development of reliable dental prosthetics.
期刊介绍:
The journal Silicon is intended to serve all those involved in studying the role of silicon as an enabling element in materials science. There are no restrictions on disciplinary boundaries provided the focus is on silicon-based materials or adds significantly to the understanding of such materials. Accordingly, such contributions are welcome in the areas of inorganic and organic chemistry, physics, biology, engineering, nanoscience, environmental science, electronics and optoelectronics, and modeling and theory. Relevant silicon-based materials include, but are not limited to, semiconductors, polymers, composites, ceramics, glasses, coatings, resins, composites, small molecules, and thin films.