{"title":"Impact of the Catalytic Activity of SiO2 on the Synthesis of Aryl Benzimidazoles and its Mechanism: NMR Studies and Antimicrobial Effect","authors":"S. M. Prakash, K. Jayamoorthy, N. Srinivasan","doi":"10.1007/s12633-024-03140-3","DOIUrl":null,"url":null,"abstract":"<div><p>Nano SiO₂ has been effectively utilized as a catalyst in the synthesis of new benzimidazoles. The resulting benzimidazoles have been characterized using <sup>1</sup>H and <sup>13</sup>C NMR spectroscopy, confirming their structure and purity. This nano catalyst is notable for its ability to produce higher product yields, reduce reaction times, and operate in environmentally friendly reaction media. Additionally, it is versatile in accommodating a wide range of substrates, making it a highly efficient and sustainable option for benzimidazole synthesis. The single crystal X-ray analysis of 2-(naphthalen-1-yl)-1-phenyl-1H-benzo[d]imidazole (1) has been performed and discussed. Compound 1 exhibits substantially planar naphthalene ring system [maximum deviation = 0.0254 (6) A º] and benzimidazole unit [maximum deviation = 0.0258 (6) A º]. A dihedral angle of 61.955 (17) ˚ is made by them. The imidazole ring forms a dihedral angle of 61.73 (4) ˚ with the phenyl ring. The benzimidazoles2-(4-(difluoromethyl)phenyl)-1-phenyl-1<i>H</i>-benzo[d]imidazole (2), 1-(4-chlorobenzyl)-2-(4-chlorophenyl)-1<i>H</i>-benzo[d]imidazole (4) and 1-(4-bromobenzyl)-2-(4-bromophenyl)-1<i>H</i>-benzo[d]imidazole (5) are more active against <i>S.aureus</i> and <i>S.typhi</i>, for antibacterial studies. In comparison to the usual medication, benimidazoles 2 and 4 exhibit greater activity against A. flavus and C. albicans in antifungal tests.</p></div>","PeriodicalId":776,"journal":{"name":"Silicon","volume":"16 17","pages":"6099 - 6106"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silicon","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12633-024-03140-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nano SiO₂ has been effectively utilized as a catalyst in the synthesis of new benzimidazoles. The resulting benzimidazoles have been characterized using 1H and 13C NMR spectroscopy, confirming their structure and purity. This nano catalyst is notable for its ability to produce higher product yields, reduce reaction times, and operate in environmentally friendly reaction media. Additionally, it is versatile in accommodating a wide range of substrates, making it a highly efficient and sustainable option for benzimidazole synthesis. The single crystal X-ray analysis of 2-(naphthalen-1-yl)-1-phenyl-1H-benzo[d]imidazole (1) has been performed and discussed. Compound 1 exhibits substantially planar naphthalene ring system [maximum deviation = 0.0254 (6) A º] and benzimidazole unit [maximum deviation = 0.0258 (6) A º]. A dihedral angle of 61.955 (17) ˚ is made by them. The imidazole ring forms a dihedral angle of 61.73 (4) ˚ with the phenyl ring. The benzimidazoles2-(4-(difluoromethyl)phenyl)-1-phenyl-1H-benzo[d]imidazole (2), 1-(4-chlorobenzyl)-2-(4-chlorophenyl)-1H-benzo[d]imidazole (4) and 1-(4-bromobenzyl)-2-(4-bromophenyl)-1H-benzo[d]imidazole (5) are more active against S.aureus and S.typhi, for antibacterial studies. In comparison to the usual medication, benimidazoles 2 and 4 exhibit greater activity against A. flavus and C. albicans in antifungal tests.
期刊介绍:
The journal Silicon is intended to serve all those involved in studying the role of silicon as an enabling element in materials science. There are no restrictions on disciplinary boundaries provided the focus is on silicon-based materials or adds significantly to the understanding of such materials. Accordingly, such contributions are welcome in the areas of inorganic and organic chemistry, physics, biology, engineering, nanoscience, environmental science, electronics and optoelectronics, and modeling and theory. Relevant silicon-based materials include, but are not limited to, semiconductors, polymers, composites, ceramics, glasses, coatings, resins, composites, small molecules, and thin films.