RNA in axons, dendrites, synapses and beyond

IF 3.5 3区 医学 Q2 NEUROSCIENCES
Richard Taylor, Nikolas Nikolaou
{"title":"RNA in axons, dendrites, synapses and beyond","authors":"Richard Taylor, Nikolas Nikolaou","doi":"10.3389/fnmol.2024.1397378","DOIUrl":null,"url":null,"abstract":"In neurons, a diverse range of coding and non-coding RNAs localize to axons, dendrites, and synapses, where they facilitate rapid responses to local needs, such as axon and dendrite extension and branching, synapse formation, and synaptic plasticity. Here, we review the extent of our current understanding of RNA subclass diversity in these functionally demanding subcellular compartments. We discuss the similarities and differences identified between axonal, dendritic and synaptic local transcriptomes, and discuss the reported and hypothesized fates and functions of localized RNAs. Furthermore, we outline the RNA composition of exosomes that bud off from neurites, and their implications for the biology of neighboring cells. Finally, we highlight recent advances in third-generation sequencing technologies that will likely provide transformative insights into splice isoform and RNA modification diversity in local transcriptomes.","PeriodicalId":12630,"journal":{"name":"Frontiers in Molecular Neuroscience","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnmol.2024.1397378","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In neurons, a diverse range of coding and non-coding RNAs localize to axons, dendrites, and synapses, where they facilitate rapid responses to local needs, such as axon and dendrite extension and branching, synapse formation, and synaptic plasticity. Here, we review the extent of our current understanding of RNA subclass diversity in these functionally demanding subcellular compartments. We discuss the similarities and differences identified between axonal, dendritic and synaptic local transcriptomes, and discuss the reported and hypothesized fates and functions of localized RNAs. Furthermore, we outline the RNA composition of exosomes that bud off from neurites, and their implications for the biology of neighboring cells. Finally, we highlight recent advances in third-generation sequencing technologies that will likely provide transformative insights into splice isoform and RNA modification diversity in local transcriptomes.
轴突、树突、突触及其他部位的 RNA
在神经元中,多种编码和非编码 RNA 定位于轴突、树突和突触,它们有助于对轴突和树突的延伸和分支、突触形成和突触可塑性等局部需求做出快速反应。在这里,我们回顾了目前我们对这些功能要求极高的亚细胞区室中 RNA 亚类多样性的了解程度。我们讨论了轴突、树突和突触局部转录组之间的异同,并讨论了已报道和假设的局部 RNA 的命运和功能。此外,我们还概述了从神经元萌发的外泌体的 RNA 组成及其对邻近细胞生物学的影响。最后,我们重点介绍了第三代测序技术的最新进展,这些技术很可能为深入了解局部转录组中剪接同工酶和 RNA 修饰的多样性提供变革性的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
2.10%
发文量
669
审稿时长
14 weeks
期刊介绍: Frontiers in Molecular Neuroscience is a first-tier electronic journal devoted to identifying key molecules, as well as their functions and interactions, that underlie the structure, design and function of the brain across all levels. The scope of our journal encompasses synaptic and cellular proteins, coding and non-coding RNA, and molecular mechanisms regulating cellular and dendritic RNA translation. In recent years, a plethora of new cellular and synaptic players have been identified from reduced systems, such as neuronal cultures, but the relevance of these molecules in terms of cellular and synaptic function and plasticity in the living brain and its circuits has not been validated. The effects of spine growth and density observed using gene products identified from in vitro work are frequently not reproduced in vivo. Our journal is particularly interested in studies on genetically engineered model organisms (C. elegans, Drosophila, mouse), in which alterations in key molecules underlying cellular and synaptic function and plasticity produce defined anatomical, physiological and behavioral changes. In the mouse, genetic alterations limited to particular neural circuits (olfactory bulb, motor cortex, cortical layers, hippocampal subfields, cerebellum), preferably regulated in time and on demand, are of special interest, as they sidestep potential compensatory developmental effects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信