Sheng Jiang, Shaobing Xiong, Shuaifei Mao, Yefan Zhang, Dongyang Zhao, Xiaomeng You, Vladimir Gaishun, Dmitry Kovalenk, Qinye Bao
{"title":"Light-activated tautomeric transition enhanced buried heterointerface for highly efficient and ultraviolet robust perovskite solar cells","authors":"Sheng Jiang, Shaobing Xiong, Shuaifei Mao, Yefan Zhang, Dongyang Zhao, Xiaomeng You, Vladimir Gaishun, Dmitry Kovalenk, Qinye Bao","doi":"10.1007/s11426-024-2194-0","DOIUrl":null,"url":null,"abstract":"<p>The buried heterointerface of perovskite solar cells (PSCs) suffers from serious nonradiative recombination and ultraviolet (UV) light stress, relentlessly limiting further increase in their power conversion efficiency and operational stability. Herein, we develop an emerging strategy of incorporating a thin UV-activated tautomeric transition layer onto underlying charge transport layer and then depositing perovskite layer to construct an efficient hole-selective buried heterojunction. It is revealed that the UV-activated tautomeric transition interlayer not only improves upper perovskite crystallinity, diminishes thermionic loss for collecting hole and passivates defect site at such buried contact that significantly promote charge transport and suppress nonradiative recombination, but also effectively protects adjacent perovskite from UV degradation through “UV sunscreen” effect. As a result, we report a remarkably enhanced efficiency of 24.76% compared to 22.02% of the control device. More importantly, the achieved high-efficiency PSC features excellent resistance against UV radiation at 365 nm of 100 and 850 mW cm<sup>−2</sup>, which are approximately 21 and 184 times of UV flux (4.6 mW cm<sup>−2</sup>) under AM 1.5G solar illumination. This work provides a promising approach of strengthening buried heterointerface for simultaneous realization of highly efficient and UV robust PSCs.</p>","PeriodicalId":772,"journal":{"name":"Science China Chemistry","volume":"3 1","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1007/s11426-024-2194-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The buried heterointerface of perovskite solar cells (PSCs) suffers from serious nonradiative recombination and ultraviolet (UV) light stress, relentlessly limiting further increase in their power conversion efficiency and operational stability. Herein, we develop an emerging strategy of incorporating a thin UV-activated tautomeric transition layer onto underlying charge transport layer and then depositing perovskite layer to construct an efficient hole-selective buried heterojunction. It is revealed that the UV-activated tautomeric transition interlayer not only improves upper perovskite crystallinity, diminishes thermionic loss for collecting hole and passivates defect site at such buried contact that significantly promote charge transport and suppress nonradiative recombination, but also effectively protects adjacent perovskite from UV degradation through “UV sunscreen” effect. As a result, we report a remarkably enhanced efficiency of 24.76% compared to 22.02% of the control device. More importantly, the achieved high-efficiency PSC features excellent resistance against UV radiation at 365 nm of 100 and 850 mW cm−2, which are approximately 21 and 184 times of UV flux (4.6 mW cm−2) under AM 1.5G solar illumination. This work provides a promising approach of strengthening buried heterointerface for simultaneous realization of highly efficient and UV robust PSCs.
期刊介绍:
Science China Chemistry, co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China and published by Science China Press, publishes high-quality original research in both basic and applied chemistry. Indexed by Science Citation Index, it is a premier academic journal in the field.
Categories of articles include:
Highlights. Brief summaries and scholarly comments on recent research achievements in any field of chemistry.
Perspectives. Concise reports on thelatest chemistry trends of interest to scientists worldwide, including discussions of research breakthroughs and interpretations of important science and funding policies.
Reviews. In-depth summaries of representative results and achievements of the past 5–10 years in selected topics based on or closely related to the research expertise of the authors, providing a thorough assessment of the significance, current status, and future research directions of the field.