A bi-Gamma Distribution Model for a Broadband Non-Gaussian Random Stress Rainflow Range Based on a Neural Network

Q1 Mathematics
Jie Wang, Huaihai Chen
{"title":"A bi-Gamma Distribution Model for a Broadband Non-Gaussian Random Stress Rainflow Range Based on a Neural Network","authors":"Jie Wang, Huaihai Chen","doi":"10.3390/app14188376","DOIUrl":null,"url":null,"abstract":"A bi-Gamma distribution model is proposed to determine the probability density function (PDF) of broadband non-Gaussian random stress rainflow ranges during vibration fatigue. A series of stress Power Spectral Densities (PSD) are provided, and the corresponding Gaussian random stress time histories are generated using the inverse Fourier transform and time-domain randomization methods. These Gaussian random stress time histories are then transformed into non-Gaussian random stress time histories. The probability density values of the stress ranges are obtained using the rainflow counting method, and then the bi-Gamma distribution PDF model is fitted to these values to determine the model’s parameters. The PSD parameters and the kurtosis, along with their corresponding model parameters, constitute the neural network input–output dataset. The neural network model established after training can directly provide the parameter values of the bi-Gamma model based on the input PSD parameters and kurtosis, thereby obtaining the PDF of the stress rainflow ranges. The predictive capability of the neural network model is verified and the effects of non-Gaussian random stress with different kurtosis on the structural fatigue life are compared for the same stress PSD. And all life predicted results were within the second scatter band.","PeriodicalId":8224,"journal":{"name":"Applied Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/app14188376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

A bi-Gamma distribution model is proposed to determine the probability density function (PDF) of broadband non-Gaussian random stress rainflow ranges during vibration fatigue. A series of stress Power Spectral Densities (PSD) are provided, and the corresponding Gaussian random stress time histories are generated using the inverse Fourier transform and time-domain randomization methods. These Gaussian random stress time histories are then transformed into non-Gaussian random stress time histories. The probability density values of the stress ranges are obtained using the rainflow counting method, and then the bi-Gamma distribution PDF model is fitted to these values to determine the model’s parameters. The PSD parameters and the kurtosis, along with their corresponding model parameters, constitute the neural network input–output dataset. The neural network model established after training can directly provide the parameter values of the bi-Gamma model based on the input PSD parameters and kurtosis, thereby obtaining the PDF of the stress rainflow ranges. The predictive capability of the neural network model is verified and the effects of non-Gaussian random stress with different kurtosis on the structural fatigue life are compared for the same stress PSD. And all life predicted results were within the second scatter band.
基于神经网络的宽带非高斯随机应力雨流范围双伽马分布模型
本文提出了一种双伽马分布模型,用于确定振动疲劳过程中宽带非高斯随机应力雨流范围的概率密度函数(PDF)。提供了一系列应力功率谱密度 (PSD),并使用反傅里叶变换和时域随机化方法生成了相应的高斯随机应力时间历程。然后将这些高斯随机应力时间历程转换为非高斯随机应力时间历程。使用雨流计数法获得应力范围的概率密度值,然后将双伽马分布 PDF 模型拟合到这些值中,以确定模型参数。PSD 参数和峰度以及相应的模型参数构成了神经网络输入输出数据集。训练后建立的神经网络模型可根据输入的 PSD 参数和峰度直接提供 bi-Gamma 模型的参数值,从而获得应力雨流范围的 PDF。验证了神经网络模型的预测能力,并比较了相同应力 PSD 下不同峰度的非高斯随机应力对结构疲劳寿命的影响。所有的寿命预测结果都在第二散点带内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Sciences
Applied Sciences Mathematics-Applied Mathematics
CiteScore
6.40
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊介绍: APPS is an international journal. APPS covers a wide spectrum of pure and applied mathematics in science and technology, promoting especially papers presented at Carpato-Balkan meetings. The Editorial Board of APPS takes a very active role in selecting and refereeing papers, ensuring the best quality of contemporary mathematics and its applications. APPS is abstracted in Zentralblatt für Mathematik. The APPS journal uses Double blind peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信