Avery Pritchard, Heather Fuentes, Jessica Santosa, Madison Gonzalez, Josiah Garan, Vanessa Bartling, Katrina Nelson, Albert Dato, Todd Monson, Renee Van Ginhoven
{"title":"Understanding surfaces and interfaces in nanocomposites of silicone and barium titanate through experiments and modeling","authors":"Avery Pritchard, Heather Fuentes, Jessica Santosa, Madison Gonzalez, Josiah Garan, Vanessa Bartling, Katrina Nelson, Albert Dato, Todd Monson, Renee Van Ginhoven","doi":"10.1557/s43579-024-00638-0","DOIUrl":null,"url":null,"abstract":"<p>Barium titanate (BTO) is a ferroelectric perovskite used in electronics and energy storage systems because of its high dielectric constant. Decreasing the BTO particle size was shown to increase the dielectric constant of the perovskite, which is an intriguing but contested result. We investigated this result by fabricating silicone-matrix nanocomposite specimens containing BTO particles of decreasing diameter. Furthermore, density functional theory modeling was used to understand the interactions at the BTO particle surface. Combining results from experiments and modeling indicated that polymer type, particle surface interactions, and particle surface structure can influence the dielectric properties of polymer-matrix nanocomposites containing BTO.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43579-024-00638-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Barium titanate (BTO) is a ferroelectric perovskite used in electronics and energy storage systems because of its high dielectric constant. Decreasing the BTO particle size was shown to increase the dielectric constant of the perovskite, which is an intriguing but contested result. We investigated this result by fabricating silicone-matrix nanocomposite specimens containing BTO particles of decreasing diameter. Furthermore, density functional theory modeling was used to understand the interactions at the BTO particle surface. Combining results from experiments and modeling indicated that polymer type, particle surface interactions, and particle surface structure can influence the dielectric properties of polymer-matrix nanocomposites containing BTO.
期刊介绍:
MRS Communications is a full-color, high-impact journal focused on rapid publication of completed research with broad appeal to the materials community. MRS Communications offers a rapid but rigorous peer-review process and time to publication. Leveraging its access to the far-reaching technical expertise of MRS members and leading materials researchers from around the world, the journal boasts an experienced and highly respected board of principal editors and reviewers.