Liouville results for stable solutions of weighted elliptic equations involving the Grushin operator

IF 1.1 4区 数学 Q1 MATHEMATICS
Wafa Mtaouaa
{"title":"Liouville results for stable solutions of weighted elliptic equations involving the Grushin operator","authors":"Wafa Mtaouaa","doi":"10.1007/s11587-024-00887-0","DOIUrl":null,"url":null,"abstract":"<p>We examine the following weighted degenerate elliptic equation involving the Grushin operator: </p><span>$$\\begin{aligned} \\Delta _s u+\\vartheta _{s}(x') |u|^{\\theta -1}u =0\\;\\;\\; \\text{ in }\\,\\, \\mathbb {R}^N,\\;\\;N&gt;2, \\;\\; \\theta &gt;1, \\end{aligned}$$</span><p>where <span>\\(x'=(x_{1},...,x_{m})\\in \\mathbb {R}^m,\\)</span> <span>\\(1\\le m\\le N,\\)</span> <span>\\(\\vartheta _{s} \\in C(\\mathbb {R}^m, \\mathbb {R})\\)</span> is a continuous positive function satisfying </p><span>$$\\begin{aligned} \\displaystyle {\\lim _{|x'|_{s}\\rightarrow \\infty }}\\frac{\\vartheta _{s}(x')}{|x'|_{s}^{\\alpha }}&gt;0,\\;\\;\\; \\text{ for } \\text{ some }\\,\\,\\alpha &gt;-2, \\end{aligned}$$</span><p>and <span>\\(\\Delta _s\\)</span> is an operator of the form </p><span>$$\\begin{aligned} \\Delta _s:=\\sum _{i=1}^k \\partial _{x_{i}}(s_{i}^2\\partial _{x_{i}}). \\end{aligned}$$</span><p>Under some general hypotheses of the functions <span>\\(s_i,\\;i=1,\\dots , k,\\)</span> we establish some new Liouville type theorems for stable solutions of this equation for a large classe of weights. Our results recover and considerably improve the previous works (Mtiri in Acta Appl Math 174:7, 2021; Farina and Hasegawa in Proc Royal Soc Edinburgh 150:1567, 2020).</p>","PeriodicalId":21373,"journal":{"name":"Ricerche di Matematica","volume":"38 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ricerche di Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11587-024-00887-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We examine the following weighted degenerate elliptic equation involving the Grushin operator:

$$\begin{aligned} \Delta _s u+\vartheta _{s}(x') |u|^{\theta -1}u =0\;\;\; \text{ in }\,\, \mathbb {R}^N,\;\;N>2, \;\; \theta >1, \end{aligned}$$

where \(x'=(x_{1},...,x_{m})\in \mathbb {R}^m,\) \(1\le m\le N,\) \(\vartheta _{s} \in C(\mathbb {R}^m, \mathbb {R})\) is a continuous positive function satisfying

$$\begin{aligned} \displaystyle {\lim _{|x'|_{s}\rightarrow \infty }}\frac{\vartheta _{s}(x')}{|x'|_{s}^{\alpha }}>0,\;\;\; \text{ for } \text{ some }\,\,\alpha >-2, \end{aligned}$$

and \(\Delta _s\) is an operator of the form

$$\begin{aligned} \Delta _s:=\sum _{i=1}^k \partial _{x_{i}}(s_{i}^2\partial _{x_{i}}). \end{aligned}$$

Under some general hypotheses of the functions \(s_i,\;i=1,\dots , k,\) we establish some new Liouville type theorems for stable solutions of this equation for a large classe of weights. Our results recover and considerably improve the previous works (Mtiri in Acta Appl Math 174:7, 2021; Farina and Hasegawa in Proc Royal Soc Edinburgh 150:1567, 2020).

涉及格鲁申算子的加权椭圆方程稳定解的柳维尔结果
我们研究了以下涉及格鲁申算子的加权退化椭圆方程: $$\begin{aligned}\Delta _s u+vartheta _{s}(x') |u|^{theta -1}u =0\;\;\text{ in }\,\mathbb {R}^N,\;\;N>2, \;\theta >1, \end{aligned}$$ 其中 \(x'=(x_{1},...,x_{m})\in \mathbb {R}^m,\)\在 C(\mathbb {R}^m, \mathbb {R})\) 是一个连续的正函数,满足$$\begin{aligned}。\displaystyle {lim _{|x'|_{s}\rightarrow \infty }}frac{vartheta _{s}(x')}{|x'|_{s}^{\alpha }}>0,\;\;\text{ for }\text{ some }\,\alpha >-2, \end{aligned}$ 而 \(\Delta _s\) 是一个形式为 $$begin{aligned} 的算子\Delta _s:=sum _{i=1}^k \partial _{x_{i}}(s_{i}^2\partial _{x_{i}}).\end{aligned}$$在函数 \(s_i,\;i=1,\dots,k,\)的一些一般假设下,我们建立了一些新的利乌维尔式定理,用于求这个方程在一大类权重下的稳定解。我们的结果恢复并大大改进了之前的工作(Mtiri 在 Acta Appl Math 174:7, 2021 年;Farina 和 Hasegawa 在 Proc Royal Soc Edinburgh 150:1567, 2020 年)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ricerche di Matematica
Ricerche di Matematica Mathematics-Applied Mathematics
CiteScore
3.00
自引率
8.30%
发文量
61
期刊介绍: “Ricerche di Matematica” publishes high-quality research articles in any field of pure and applied mathematics. Articles must be original and written in English. Details about article submission can be found online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信