{"title":"Liouville results for stable solutions of weighted elliptic equations involving the Grushin operator","authors":"Wafa Mtaouaa","doi":"10.1007/s11587-024-00887-0","DOIUrl":null,"url":null,"abstract":"<p>We examine the following weighted degenerate elliptic equation involving the Grushin operator: </p><span>$$\\begin{aligned} \\Delta _s u+\\vartheta _{s}(x') |u|^{\\theta -1}u =0\\;\\;\\; \\text{ in }\\,\\, \\mathbb {R}^N,\\;\\;N>2, \\;\\; \\theta >1, \\end{aligned}$$</span><p>where <span>\\(x'=(x_{1},...,x_{m})\\in \\mathbb {R}^m,\\)</span> <span>\\(1\\le m\\le N,\\)</span> <span>\\(\\vartheta _{s} \\in C(\\mathbb {R}^m, \\mathbb {R})\\)</span> is a continuous positive function satisfying </p><span>$$\\begin{aligned} \\displaystyle {\\lim _{|x'|_{s}\\rightarrow \\infty }}\\frac{\\vartheta _{s}(x')}{|x'|_{s}^{\\alpha }}>0,\\;\\;\\; \\text{ for } \\text{ some }\\,\\,\\alpha >-2, \\end{aligned}$$</span><p>and <span>\\(\\Delta _s\\)</span> is an operator of the form </p><span>$$\\begin{aligned} \\Delta _s:=\\sum _{i=1}^k \\partial _{x_{i}}(s_{i}^2\\partial _{x_{i}}). \\end{aligned}$$</span><p>Under some general hypotheses of the functions <span>\\(s_i,\\;i=1,\\dots , k,\\)</span> we establish some new Liouville type theorems for stable solutions of this equation for a large classe of weights. Our results recover and considerably improve the previous works (Mtiri in Acta Appl Math 174:7, 2021; Farina and Hasegawa in Proc Royal Soc Edinburgh 150:1567, 2020).</p>","PeriodicalId":21373,"journal":{"name":"Ricerche di Matematica","volume":"38 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ricerche di Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11587-024-00887-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We examine the following weighted degenerate elliptic equation involving the Grushin operator:
where \(x'=(x_{1},...,x_{m})\in \mathbb {R}^m,\)\(1\le m\le N,\)\(\vartheta _{s} \in C(\mathbb {R}^m, \mathbb {R})\) is a continuous positive function satisfying
$$\begin{aligned} \displaystyle {\lim _{|x'|_{s}\rightarrow \infty }}\frac{\vartheta _{s}(x')}{|x'|_{s}^{\alpha }}>0,\;\;\; \text{ for } \text{ some }\,\,\alpha >-2, \end{aligned}$$
Under some general hypotheses of the functions \(s_i,\;i=1,\dots , k,\) we establish some new Liouville type theorems for stable solutions of this equation for a large classe of weights. Our results recover and considerably improve the previous works (Mtiri in Acta Appl Math 174:7, 2021; Farina and Hasegawa in Proc Royal Soc Edinburgh 150:1567, 2020).
期刊介绍:
“Ricerche di Matematica” publishes high-quality research articles in any field of pure and applied mathematics. Articles must be original and written in English. Details about article submission can be found online.