Júlio Fernando Sousa de Carvalho, Renan Matos Monção, Ediones Maciel de Sousa, Cleânio da Luz Lima, Carla Laize dos Santos Cruz Costa, Ramón Raudel Pena Garcia, Michelle Cequeira Feitor, Thércio Henrique de Carvalho Costa, Maxwell Santana Libório, Rômulo Ribeiro Magalhães de Sousa
{"title":"Influence of Treatment Time on the Synthesis of Copper Oxide Semiconductor Films by Cathode Cage Plasma Deposition","authors":"Júlio Fernando Sousa de Carvalho, Renan Matos Monção, Ediones Maciel de Sousa, Cleânio da Luz Lima, Carla Laize dos Santos Cruz Costa, Ramón Raudel Pena Garcia, Michelle Cequeira Feitor, Thércio Henrique de Carvalho Costa, Maxwell Santana Libório, Rômulo Ribeiro Magalhães de Sousa","doi":"10.1007/s11664-024-11427-9","DOIUrl":null,"url":null,"abstract":"<p>Due to its elemental abundance, nontoxic nature, and suitable optical-electrical properties, copper oxide is a valuable <i>p</i>-type semiconductor for photovoltaic (PV) applications. However, synthesizing copper oxide films for PV devices with a band gap close to the Shockley–Queisser limit (1.4 eV) using a one-step deposition process is important for maximum efficiency and synthesis simplification. In this work, cathodic cage plasma deposition (CCPD) of copper oxide (CuO + Cu<sub>2</sub>O) films on glass was performed to evaluate the microstructural, morphological, chemical, and band gap changes as a function of treatment time (2 h, 3 h, 4 h, and 5 h). The samples were analyzed by scanning electron microscopy, energy-dispersive spectroscopy, x-ray diffraction, and Raman spectroscopy to identify the morphology, chemical composition, and crystalline phases of the deposited films, and diffuse reflectance spectroscopy was used to calculate the band gap width. The films showed characteristics of absorbing material in the visible region with band gap values from 1.43 eV to 1.5 eV. However, the sample treated for 3 h had a compact coating with a thickness of 1.46 µm and band gap energy of 1.43 eV, showing the applicability of the CCPD technique for synthesizing copper oxide absorber layers with an optimum band gap in a single deposition step.</p>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11664-024-11427-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Due to its elemental abundance, nontoxic nature, and suitable optical-electrical properties, copper oxide is a valuable p-type semiconductor for photovoltaic (PV) applications. However, synthesizing copper oxide films for PV devices with a band gap close to the Shockley–Queisser limit (1.4 eV) using a one-step deposition process is important for maximum efficiency and synthesis simplification. In this work, cathodic cage plasma deposition (CCPD) of copper oxide (CuO + Cu2O) films on glass was performed to evaluate the microstructural, morphological, chemical, and band gap changes as a function of treatment time (2 h, 3 h, 4 h, and 5 h). The samples were analyzed by scanning electron microscopy, energy-dispersive spectroscopy, x-ray diffraction, and Raman spectroscopy to identify the morphology, chemical composition, and crystalline phases of the deposited films, and diffuse reflectance spectroscopy was used to calculate the band gap width. The films showed characteristics of absorbing material in the visible region with band gap values from 1.43 eV to 1.5 eV. However, the sample treated for 3 h had a compact coating with a thickness of 1.46 µm and band gap energy of 1.43 eV, showing the applicability of the CCPD technique for synthesizing copper oxide absorber layers with an optimum band gap in a single deposition step.
期刊介绍:
The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications.
Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field.
A journal of The Minerals, Metals & Materials Society.