{"title":"Mechanical and Microstructural Characteristics of Fly Ash-Nano-Silica Composites","authors":"K. P. Anagha, L. Abhijith, K. Rangaswamy","doi":"10.1007/s40996-024-01616-1","DOIUrl":null,"url":null,"abstract":"<p>An enhancement of the inherent strength and durability characteristics is required for the effective utilization of fly ash (FA) in geotechnical engineering applications. This study presents a novel technique employing nano-silica (NS) to stabilize FA deposits, focusing on its effects on the unconfined compressive strength (UCS) and durability. The effects of different NS dosages (0.25%, 0.50%, 0.75%, and 1%), curing periods (7, 14, 28, 60, and 90 days), mixing methods (dry and wet), cement (CEM) addition, and cyclic wetting-drying (C-W-D) on the mechanical characteristics of FA-NS composites were studied. The test results revealed that FA-NS composites exhibit superior performance compared to FA in terms of strength and durability. An optimal dosage of 0.50% NS resulted in a substantial increase of 1043% in 28-day UCS, with strength development most pronounced during the early curing stages (7 days). The type of mixing method plays a major role in the assessment of the UCS of FA-NS composites. The addition of CEM, alone or combined with NS in FA, increased the UCS but was less effective than the FA-NS composite. The durability against C-W-D was improved, with 50% and 20% increases in the 28-day UCS after the 1<sup>st</sup> and 12<sup>th</sup> cycles, respectively, maintaining a higher UCS than the actual 28-day UCS. Scanning electron microscopy images and Fourier transform infrared spectroscopy indicated the formation of primary and secondary pozzolanic compounds, contributing to a cohesive structure and enhancing the UCS and durability of the FA-NS composite. Thus, incorporating a small dosage of NS remarkably improves the inherent strength characteristics of FA and offers substantial benefits for long-term construction and geotechnical engineering applications.</p>","PeriodicalId":14550,"journal":{"name":"Iranian Journal of Science and Technology, Transactions of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40996-024-01616-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
An enhancement of the inherent strength and durability characteristics is required for the effective utilization of fly ash (FA) in geotechnical engineering applications. This study presents a novel technique employing nano-silica (NS) to stabilize FA deposits, focusing on its effects on the unconfined compressive strength (UCS) and durability. The effects of different NS dosages (0.25%, 0.50%, 0.75%, and 1%), curing periods (7, 14, 28, 60, and 90 days), mixing methods (dry and wet), cement (CEM) addition, and cyclic wetting-drying (C-W-D) on the mechanical characteristics of FA-NS composites were studied. The test results revealed that FA-NS composites exhibit superior performance compared to FA in terms of strength and durability. An optimal dosage of 0.50% NS resulted in a substantial increase of 1043% in 28-day UCS, with strength development most pronounced during the early curing stages (7 days). The type of mixing method plays a major role in the assessment of the UCS of FA-NS composites. The addition of CEM, alone or combined with NS in FA, increased the UCS but was less effective than the FA-NS composite. The durability against C-W-D was improved, with 50% and 20% increases in the 28-day UCS after the 1st and 12th cycles, respectively, maintaining a higher UCS than the actual 28-day UCS. Scanning electron microscopy images and Fourier transform infrared spectroscopy indicated the formation of primary and secondary pozzolanic compounds, contributing to a cohesive structure and enhancing the UCS and durability of the FA-NS composite. Thus, incorporating a small dosage of NS remarkably improves the inherent strength characteristics of FA and offers substantial benefits for long-term construction and geotechnical engineering applications.
期刊介绍:
The aim of the Iranian Journal of Science and Technology is to foster the growth of scientific research among Iranian engineers and scientists and to provide a medium by means of which the fruits of these researches may be brought to the attention of the world’s civil Engineering communities. This transaction focuses on all aspects of Civil Engineering
and will accept the original research contributions (previously unpublished) from all areas of established engineering disciplines. The papers may be theoretical, experimental or both. The journal publishes original papers within the broad field of civil engineering which include, but are not limited to, the following:
-Structural engineering-
Earthquake engineering-
Concrete engineering-
Construction management-
Steel structures-
Engineering mechanics-
Water resources engineering-
Hydraulic engineering-
Hydraulic structures-
Environmental engineering-
Soil mechanics-
Foundation engineering-
Geotechnical engineering-
Transportation engineering-
Surveying and geomatics.