Structural, Optical, and Magnetic Studies of Nickel-Doped β-Ga2O3 Monoclinic and Spinel Polycrystalline Powders

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Anju Babu, N. Madhusudhana Rao
{"title":"Structural, Optical, and Magnetic Studies of Nickel-Doped β-Ga2O3 Monoclinic and Spinel Polycrystalline Powders","authors":"Anju Babu, N. Madhusudhana Rao","doi":"10.1007/s11664-024-11452-8","DOIUrl":null,"url":null,"abstract":"<p>β-Gallium oxide has well-studied electrical characteristics but relatively less explored optical as well as magnetic properties. In this work, pure and Ni-doped β-Ga<sub>2</sub>O<sub>3</sub> polycrystalline powders were prepared using a hydrothermal method to study the structural, optical, and magnetic properties at various concentrations of Ni at 1 M%, 3 M%, 5 M%, and 7 M%. XRD analysis confirmed the formation of monoclinic β-Ga<sub>2</sub>O<sub>3</sub> up to Ni 1 M% doping. The formation of additional peaks was observed exclusively for the samples doped with Ni from 3 M% to 7 M%. These additional peaks belong to NiGa<sub>2</sub>O<sub>4</sub> that has an inverse spinel structure. The reflectance studies using UV–Vis diffuse reflectance spectroscopy shows a reduction in bandgap from approximately 4.7 eV to 4.1 eV with the addition of the dopant. The emission peaks observed from photoluminescence studies shows UV, blue, and green emissions with varying intensity. Room-temperature magnetic studies performed using a vibrating sample magnetometer showed a transition from the diamagnetic state of the pure sample to the antiferromagnetic state with increasing Ni concentration in the doped samples. The diamagnetic properties of β-Ga<sub>2</sub>O<sub>3</sub> makes it ineffective in spintronic applications. From the present work, the improved magnetism due to Ni doping coupled with the optical properties suggests that nickel-doped gallium oxide can be used as an optical magnetic bifunctional material.</p>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"38 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11664-024-11452-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

β-Gallium oxide has well-studied electrical characteristics but relatively less explored optical as well as magnetic properties. In this work, pure and Ni-doped β-Ga2O3 polycrystalline powders were prepared using a hydrothermal method to study the structural, optical, and magnetic properties at various concentrations of Ni at 1 M%, 3 M%, 5 M%, and 7 M%. XRD analysis confirmed the formation of monoclinic β-Ga2O3 up to Ni 1 M% doping. The formation of additional peaks was observed exclusively for the samples doped with Ni from 3 M% to 7 M%. These additional peaks belong to NiGa2O4 that has an inverse spinel structure. The reflectance studies using UV–Vis diffuse reflectance spectroscopy shows a reduction in bandgap from approximately 4.7 eV to 4.1 eV with the addition of the dopant. The emission peaks observed from photoluminescence studies shows UV, blue, and green emissions with varying intensity. Room-temperature magnetic studies performed using a vibrating sample magnetometer showed a transition from the diamagnetic state of the pure sample to the antiferromagnetic state with increasing Ni concentration in the doped samples. The diamagnetic properties of β-Ga2O3 makes it ineffective in spintronic applications. From the present work, the improved magnetism due to Ni doping coupled with the optical properties suggests that nickel-doped gallium oxide can be used as an optical magnetic bifunctional material.

Abstract Image

掺镍 β-Ga2O3 单斜和尖晶多晶粉末的结构、光学和磁学研究
β-氧化镓的电学特性已得到充分研究,但对其光学和磁学特性的研究相对较少。本研究采用水热法制备了纯镍和掺镍的β-Ga2O3 多晶粉末,研究了不同镍浓度(1 M%、3 M%、5 M% 和 7 M%)下的结构、光学和磁学特性。XRD 分析证实了单斜β-Ga2O3 的形成,掺杂镍达到 1 M%。在掺杂 3 M% 至 7 M% Ni 的样品中,只观察到了附加峰的形成。这些附加峰属于具有反尖晶石结构的 NiGa2O4。利用紫外-可见漫反射光谱进行的反射率研究表明,掺杂剂的加入使带隙从大约 4.7 eV 减小到 4.1 eV。光致发光研究观察到的发射峰显示出不同强度的紫外线、蓝色和绿色发射。使用振动样品磁力计进行的室温磁性研究表明,随着掺杂样品中镍浓度的增加,纯样品的二磁态转变为反铁磁态。β-Ga2O3的二磁性使其在自旋电子应用中不起作用。从本研究的结果来看,掺杂镍后磁性的改善以及光学特性表明,掺杂镍的氧化镓可用作光学磁性双功能材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Electronic Materials
Journal of Electronic Materials 工程技术-材料科学:综合
CiteScore
4.10
自引率
4.80%
发文量
693
审稿时长
3.8 months
期刊介绍: The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications. Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field. A journal of The Minerals, Metals & Materials Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信