Hang Lu;Omar Alkhazragi;Yue Wang;Tien Khee Ng;Boon S. Ooi
{"title":"Parallel On-Chip Physical Random Number Generator Based on Self-Chaotic Dynamics of Free-Running Broad-Area VCSEL Array","authors":"Hang Lu;Omar Alkhazragi;Yue Wang;Tien Khee Ng;Boon S. Ooi","doi":"10.1109/JSTQE.2024.3462489","DOIUrl":null,"url":null,"abstract":"Random numbers, as a cornerstone in the interconnected digital world, are used in secure cryptographic protocols for commercial transactions, computing, and communications. Instead of the traditional deterministic pseudorandom numbers, physical random number generation (RNG) is currently being investigated by leveraging the chaotic dynamics of semiconductor lasers for improved security, speed, and compactness. However, those RNG approaches suffer from discrete and expensive components with limited scalability due to the enormous footprint imposed by the edge-emitting configuration, which increases the cost and impedes practical use in integrated devices. Herein, we demonstrated a parallel chip-scale RNG by first harnessing the self-chaotic dynamics of free-running broad-area vertical-cavity surface-emitting lasers (BA-VCSELs). The intense mode interaction within the broad-area cavity provides a robust foundation for ultrafast dynamics, allowing for high-security and high-speed RNG. Comparative analysis with a small-area quasi-single-mode VCSEL (QSM-VCSEL) confirms the efficacy of achieving high-speed RNG with hundreds of Gb/s from a single BA-VCSEL channel and 2 Tb/s from four channels as a proof-of-concept device. Given the easy fabrication and high scalability of VCSELs, this finding opens avenues for low-cost, massively parallel high-speed RNG chips with photodetector integration, unveiling opportunities for fields demanding unprecedented RNG rates and high levels of cybersecurity.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":"31 2: Pwr. and Effic. Scaling in Semiconductor Lasers","pages":"1-11"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10681270","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10681270/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Random numbers, as a cornerstone in the interconnected digital world, are used in secure cryptographic protocols for commercial transactions, computing, and communications. Instead of the traditional deterministic pseudorandom numbers, physical random number generation (RNG) is currently being investigated by leveraging the chaotic dynamics of semiconductor lasers for improved security, speed, and compactness. However, those RNG approaches suffer from discrete and expensive components with limited scalability due to the enormous footprint imposed by the edge-emitting configuration, which increases the cost and impedes practical use in integrated devices. Herein, we demonstrated a parallel chip-scale RNG by first harnessing the self-chaotic dynamics of free-running broad-area vertical-cavity surface-emitting lasers (BA-VCSELs). The intense mode interaction within the broad-area cavity provides a robust foundation for ultrafast dynamics, allowing for high-security and high-speed RNG. Comparative analysis with a small-area quasi-single-mode VCSEL (QSM-VCSEL) confirms the efficacy of achieving high-speed RNG with hundreds of Gb/s from a single BA-VCSEL channel and 2 Tb/s from four channels as a proof-of-concept device. Given the easy fabrication and high scalability of VCSELs, this finding opens avenues for low-cost, massively parallel high-speed RNG chips with photodetector integration, unveiling opportunities for fields demanding unprecedented RNG rates and high levels of cybersecurity.
期刊介绍:
Papers published in the IEEE Journal of Selected Topics in Quantum Electronics fall within the broad field of science and technology of quantum electronics of a device, subsystem, or system-oriented nature. Each issue is devoted to a specific topic within this broad spectrum. Announcements of the topical areas planned for future issues, along with deadlines for receipt of manuscripts, are published in this Journal and in the IEEE Journal of Quantum Electronics. Generally, the scope of manuscripts appropriate to this Journal is the same as that for the IEEE Journal of Quantum Electronics. Manuscripts are published that report original theoretical and/or experimental research results that advance the scientific and technological base of quantum electronics devices, systems, or applications. The Journal is dedicated toward publishing research results that advance the state of the art or add to the understanding of the generation, amplification, modulation, detection, waveguiding, or propagation characteristics of coherent electromagnetic radiation having sub-millimeter and shorter wavelengths. In order to be suitable for publication in this Journal, the content of manuscripts concerned with subject-related research must have a potential impact on advancing the technological base of quantum electronic devices, systems, and/or applications. Potential authors of subject-related research have the responsibility of pointing out this potential impact. System-oriented manuscripts must be concerned with systems that perform a function previously unavailable or that outperform previously established systems that did not use quantum electronic components or concepts. Tutorial and review papers are by invitation only.