Lautaro Labarca, Othmane Benhayoune-Khadraoui, Alexandre Blais, Adrian Parra-Rodriguez
{"title":"Toolbox for nonreciprocal dispersive models in circuit quantum electrodynamics","authors":"Lautaro Labarca, Othmane Benhayoune-Khadraoui, Alexandre Blais, Adrian Parra-Rodriguez","doi":"10.1103/physrevapplied.22.034038","DOIUrl":null,"url":null,"abstract":"We provide a systematic method for constructing effective dispersive Lindblad master equations to describe weakly anharmonic superconducting circuits coupled by a generic dissipationless nonreciprocal linear system, with effective coupling parameters and decay rates written in terms of the immittance parameters characterizing the coupler. This article extends the foundational work of Solgun <i>et al.</i> [IEEE Trans. Microw. Theory Techn. 67, 928 (2019)] for linear reciprocal couplers described by an impedance response. Notably, we expand the existing toolbox to incorporate nonreciprocal elements, account for direct stray coupling between immittance ports, circumvent potential singularities, and include collective dissipative effects that arise from interactions with external common environments. We illustrate the use of our results with a circuit of weakly anharmonic Josephson junctions coupled to a multiport nonreciprocal environment and a dissipative port. The results obtained here can be used for the design of complex superconducting quantum processors with nontrivial routing of quantum information, as well as analog quantum simulators of condensed matter systems.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"14 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.034038","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We provide a systematic method for constructing effective dispersive Lindblad master equations to describe weakly anharmonic superconducting circuits coupled by a generic dissipationless nonreciprocal linear system, with effective coupling parameters and decay rates written in terms of the immittance parameters characterizing the coupler. This article extends the foundational work of Solgun et al. [IEEE Trans. Microw. Theory Techn. 67, 928 (2019)] for linear reciprocal couplers described by an impedance response. Notably, we expand the existing toolbox to incorporate nonreciprocal elements, account for direct stray coupling between immittance ports, circumvent potential singularities, and include collective dissipative effects that arise from interactions with external common environments. We illustrate the use of our results with a circuit of weakly anharmonic Josephson junctions coupled to a multiport nonreciprocal environment and a dissipative port. The results obtained here can be used for the design of complex superconducting quantum processors with nontrivial routing of quantum information, as well as analog quantum simulators of condensed matter systems.
期刊介绍:
Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry.
PRApplied focuses on topics including:
Biophysics, bioelectronics, and biomedical engineering,
Device physics,
Electronics,
Technology to harvest, store, and transmit energy, focusing on renewable energy technologies,
Geophysics and space science,
Industrial physics,
Magnetism and spintronics,
Metamaterials,
Microfluidics,
Nonlinear dynamics and pattern formation in natural or manufactured systems,
Nanoscience and nanotechnology,
Optics, optoelectronics, photonics, and photonic devices,
Quantum information processing, both algorithms and hardware,
Soft matter physics, including granular and complex fluids and active matter.