Shrinking a gradient-index-lens antenna system with a spaceplate

IF 3.8 2区 物理与天体物理 Q2 PHYSICS, APPLIED
Michal Mrnka, Thomas Whittaker, David B. Phillips, Euan Hendry, Will Whittow
{"title":"Shrinking a gradient-index-lens antenna system with a spaceplate","authors":"Michal Mrnka, Thomas Whittaker, David B. Phillips, Euan Hendry, Will Whittow","doi":"10.1103/physrevapplied.22.034039","DOIUrl":null,"url":null,"abstract":"The miniaturization of optical systems is an ongoing challenge across the electromagnetic spectrum. While the thickness of optical elements themselves can be reduced using advances in metamaterials, it is the voids between these elements—which are necessary parts of an optical system—that occupy most of the volume. Recently, a novel optical element coined a “spaceplate” has been proposed, which replaces a region of free space with a thinner optical element that emulates the free-space optical response function—thus having the potential to substantially shrink the volume of optical systems. While there have been a few proof-of-principle demonstrations of spaceplates, they have not yet been deployed in a real-world optical system. In this work, we use a bespoke-designed spaceplate to reduce the length of a gradient-index- (GRIN) lens microwave antenna. Our antenna is designed to operate at 23.5 GHz and the incorporation of a nonlocal metamaterial spaceplate enables the distance between the antenna feed and the GRIN lens to be reduced by almost a factor of 2. We find that the radiation patterns from a conventional and space-squeezed antenna are very similar, with a very low cross-polarization, and only a minor increase in the side-lobe levels when introducing the spaceplate. Our work represents a demonstration of a spaceplate integrated into a real-world optical system operating in microwave spectral region, highlighting the potential for this concept to reduce the physical size of systems in applications including imaging, spectroscopy, radar, and communications.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.034039","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The miniaturization of optical systems is an ongoing challenge across the electromagnetic spectrum. While the thickness of optical elements themselves can be reduced using advances in metamaterials, it is the voids between these elements—which are necessary parts of an optical system—that occupy most of the volume. Recently, a novel optical element coined a “spaceplate” has been proposed, which replaces a region of free space with a thinner optical element that emulates the free-space optical response function—thus having the potential to substantially shrink the volume of optical systems. While there have been a few proof-of-principle demonstrations of spaceplates, they have not yet been deployed in a real-world optical system. In this work, we use a bespoke-designed spaceplate to reduce the length of a gradient-index- (GRIN) lens microwave antenna. Our antenna is designed to operate at 23.5 GHz and the incorporation of a nonlocal metamaterial spaceplate enables the distance between the antenna feed and the GRIN lens to be reduced by almost a factor of 2. We find that the radiation patterns from a conventional and space-squeezed antenna are very similar, with a very low cross-polarization, and only a minor increase in the side-lobe levels when introducing the spaceplate. Our work represents a demonstration of a spaceplate integrated into a real-world optical system operating in microwave spectral region, highlighting the potential for this concept to reduce the physical size of systems in applications including imaging, spectroscopy, radar, and communications.

Abstract Image

用空间板缩小梯度指数透镜天线系统
光学系统的微型化是整个电磁频谱领域一直面临的挑战。虽然超材料技术的发展可以减小光学元件本身的厚度,但占据大部分体积的却是这些元件之间的空隙--它们是光学系统的必要组成部分。最近,一种被称为 "空间板 "的新型光学元件被提出,这种光学元件用更薄的光学元件取代了自由空间区域,模拟了自由空间的光学响应功能,因此有可能大幅缩小光学系统的体积。虽然已经有一些空间板的原理验证演示,但它们尚未在实际光学系统中部署。在这项工作中,我们使用定制设计的空间板来缩短梯度指数(GRIN)透镜微波天线的长度。我们发现,传统天线和空间挤压天线的辐射模式非常相似,交叉极化非常低,引入空间板后侧叶水平仅略有增加。我们的工作是将空间板集成到在微波频谱区工作的实际光学系统中的一次演示,凸显了这一概念在缩小成像、光谱学、雷达和通信等应用系统的物理尺寸方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review Applied
Physical Review Applied PHYSICS, APPLIED-
CiteScore
7.80
自引率
8.70%
发文量
760
审稿时长
2.5 months
期刊介绍: Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry. PRApplied focuses on topics including: Biophysics, bioelectronics, and biomedical engineering, Device physics, Electronics, Technology to harvest, store, and transmit energy, focusing on renewable energy technologies, Geophysics and space science, Industrial physics, Magnetism and spintronics, Metamaterials, Microfluidics, Nonlinear dynamics and pattern formation in natural or manufactured systems, Nanoscience and nanotechnology, Optics, optoelectronics, photonics, and photonic devices, Quantum information processing, both algorithms and hardware, Soft matter physics, including granular and complex fluids and active matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信