Stimulus-dependent spiking and bursting behavior in memsensor circuits: experiment and wave digital modeling

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Sebastian Jenderny, Rohit Gupta, Roshani Madurawala, Thomas Strunskus, Franz Faupel, Sören Kaps, Rainer Adelung, Karlheinz Ochs, Alexander Vahl
{"title":"Stimulus-dependent spiking and bursting behavior in memsensor circuits: experiment and wave digital modeling","authors":"Sebastian Jenderny,&nbsp;Rohit Gupta,&nbsp;Roshani Madurawala,&nbsp;Thomas Strunskus,&nbsp;Franz Faupel,&nbsp;Sören Kaps,&nbsp;Rainer Adelung,&nbsp;Karlheinz Ochs,&nbsp;Alexander Vahl","doi":"10.1140/epjb/s10051-024-00770-9","DOIUrl":null,"url":null,"abstract":"<p>Biological information processing pathways in neuron assemblies rely on spike activity, encoding information in the time domain, and operating the highly parallel network at an outstanding robustness and efficiency. One particularly important aspect is the distributed, local pre-processing effectively converting stimulus-induced signals to action potentials, temporally encoding analog information. The field of brain-inspired electronics strives to adapt concepts of information processing in neural networks, e.g., stimulus detection and processing being intertwined. As such, stimulus-modulated resistive switching in memristive devices attracts an increasing attention. This work reports on a three-component memsensor circuit, featuring a UV-sensor, a memristive device with diffusive switching characteristics and a capacitor. Upon application of a DC bias, complex, stimulus-dependent spiking and brain-inspired bursting can be observed, as experimentally showcased using combination of a microstructured, tetrapodal ZnO sensor and a Au/SiO<sub>x</sub>N<sub>y</sub>/Ag cross-point memristive device. The experimental findings are corroborated by a wave digital model, which successfully replicates both types of behavior and outlines the relation of temporal variation of switching thresholds to the occurrence of bursting activity.</p>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"97 9","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjb/s10051-024-00770-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-024-00770-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Biological information processing pathways in neuron assemblies rely on spike activity, encoding information in the time domain, and operating the highly parallel network at an outstanding robustness and efficiency. One particularly important aspect is the distributed, local pre-processing effectively converting stimulus-induced signals to action potentials, temporally encoding analog information. The field of brain-inspired electronics strives to adapt concepts of information processing in neural networks, e.g., stimulus detection and processing being intertwined. As such, stimulus-modulated resistive switching in memristive devices attracts an increasing attention. This work reports on a three-component memsensor circuit, featuring a UV-sensor, a memristive device with diffusive switching characteristics and a capacitor. Upon application of a DC bias, complex, stimulus-dependent spiking and brain-inspired bursting can be observed, as experimentally showcased using combination of a microstructured, tetrapodal ZnO sensor and a Au/SiOxNy/Ag cross-point memristive device. The experimental findings are corroborated by a wave digital model, which successfully replicates both types of behavior and outlines the relation of temporal variation of switching thresholds to the occurrence of bursting activity.

Abstract Image

记忆传感器电路中与刺激相关的尖峰和猝发行为:实验和波浪数字建模
摘要 神经元集合体中的生物信息处理途径依赖于尖峰活动,在时域中编码信息,并以出色的鲁棒性和效率运行高度并行的网络。其中一个特别重要的方面是分布式局部预处理,它能有效地将刺激诱导信号转换为动作电位,在时间上编码模拟信息。脑启发电子学领域致力于调整神经网络中的信息处理概念,如刺激检测和处理相互交织。因此,记忆器件中的刺激调制电阻开关吸引了越来越多的关注。本研究报告介绍了一种由三部分组成的忆阻器电路,包括一个紫外线传感器、一个具有扩散开关特性的忆阻器器件和一个电容器。在应用直流偏压时,可以观察到复杂的、依赖于刺激的尖峰脉冲和受大脑启发的迸发,这是用一个微结构的四极氧化锌传感器和一个金/硅氧化镍/银交叉点忆阻器组合进行的实验展示。实验结果得到了波数字模型的证实,该模型成功地复制了这两种行为,并概述了开关阈值的时间变化与猝发活动发生的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信